KVK, JAU, Targhadia (Rajkot-I) DETAILS OF ANNUAL PROGRESS REPORT (1st January 2022 to 31st December 2022)

1. GENERAL INFORMATION ABOUT THE KVK

1.1. Name and address of KVK with phone, fax and e-mail

Address with PIN code	Telephone		E mail	Website address & No. of visitors (hits)
Krishi Vigyan Kendra,	Office	FAX	kvkrajkot@gmail.com	www.jau.in
Junagadh Agricultural University,	(0281)	0281)		
Targhadia-360 023, Rajkot-I,	2784170	2784170		
Dist.: Rajkot, Gujarat State				

1.2. Name and address of host organization with phone, fax and e-mail

Address	Telep	hone	E mail	Website
	Office	FAX		address
Junagadh Agricultural University,	(0285)	(0285)	dee@jau.in	www.jau.in
Junagadh (Gujarat)	2672080	2672653		-

1.3. Name of the Senior Scientist and Head with phone & mobile No.

Name	Telephone / Contact						
	Office	Mobile	Email				
Dr. G.V. Marviya	(0281) 2784170	9825554434	gvmaravia@jau.in				

1.4. Year of sanction: September – 2004

1.5. Staff Position (as on 31st December, 2022)

SI.		Name of the	Mobile No.		If Perm please i	Date of	
51. No.	Sanctioned post	ed post incumbent		Discipline	Current Pay Band	Current Grade Pay	joining
1.	Senior Scientist and Head	Dr. G. V. Marviya	9825554434	Bio- chemistry	131400- 217100 (UL-13A)	135300/-	1-1-2022
2.	Subject Matter Specialist	Dr. M. M. Tajpara	9427667135	Animal Science	68900- 205500 (UL-11)	95400/-	4-8-2015
3.	Subject Matter Specialist	Dr. J. H. Chaudhary	9978303111	Agronomy	57700- 182400 (UL-10)	66800/-	1-8-2017
4.	Subject Matter Specialist	Vacant	-	Plant Protection	-	-	-
5.	Subject Matter Specialist	Vacant	-	Horti- culture	-	-	-
6.	Subject Matter Specialist	Shri D. P. Sanepara	9426449712	Agril. Engg.	68900- 205500 (UL-11)	- 104200/	1-11-2016

7.	Subject Matter	Smt. H. H.		Home	68900-	95400/-	17-2-2022
	Specialist	Padsumbiya	9979673732	Science	205500		
					(UL-11)		
8.	Programme	Shri A. B.	7990446090	Agronomy	39900-	46200/-	7-8-2014
	Assistant	Dabhi			126600		
					(L-7)		
9.	Computer	Miss. R. T.	9979027064	Computer	39900-	50500/-	3-1-2009
	Programmer	Padaliya			126600		
					(L-7)		
10.	Farm Manager	S. R. Rathva	9712313538	Plant	39900-	38090/-	30-7-2018
				Breeding	126600		
					(L-7)		
11.	Accountant/	M. D.	9825066876	-	25500-	44900/-	1-3-2022
	Superintendent	Vachhani			81100		
					(L-4)		
12.	Stenographer	Vacant	-	-	-		
13.	Driver 1	Vacant	-	-	-	-	-
14.	Driver 2	Vacant	-	-	-	-	-
15.	Supporting staff 1	Vacant	-	-	-	-	-
16.	Supporting staff 2	Vacant	-	-	-	-	-

1.6. Total land with KVK (in ha):

Sr. No.	Item	Area (ha)
1	Under Buildings	2.87
2.	Under Demonstration Units	0.50
3.	Under Crops	13.80
4.	Horticulture	0.50
5.	Farm Pond	0.48
6.	Others (Road & drainage)	1.85
	Total	20.00

Infrastructural Development: Buildings 1.7.

A)

		Source			Stag	ge		
S.	Name of	of		Complet	e	Incomplete		
S. No.		funding	Comple- tion Year	Plinth area (Sq. m)	Expenditure (Rs.)	Starting year	Plinth area (Sq. m)	Status of construction
1.	Administrative Building	KVK	31-3- 2011	550	5500000	-	-	-
2.	Farmers Hostel	KVK	31-3- 2011	305	3000000	-	-	-
3.	Staff Quarters (6)	KVK	31-3- 2011	400	4000000	-	-	-
4.	Demonstration Units: (8)					-	-	-
	Solar water pumping system	ATIC	2019	7.5 HP	262500	-	-	-
	Bio gas plant	RKVY	2007	10 cu.m	42000	-	-	-

	Farm implement	RKVY	2009	Diff. farm	_	_	_	-
	demo.		2007	implements				
	Vermi-compost unit	KVK	2018	-	-	-	-	-
	Farm waste compositing	KVK	2019	7 m x 5 m	-	-	-	-
	Entomophagous park	KVK	2018	0.10 ha	-	-	-	-
	Crop cafeteria	KVK	2012	0.10 ha	_	_	-	_
	Kitchen garden	KVK	2018	0.05 ha	_	_	_	-
5	Fencing/ Farm wall					-	-	-
6	Rain Water harve	esting syst	tem: (5)					
	Farm pond-1	KVK	2012	9000 cu.m capacity	105000		s collecti gricultur	ng from 12 ha al land
	Farm pond-2	KVK	2010	850 cu.m capacity	-	Runoff is collecting from 2 ha agricultural land and 3 ha building area Rain water harvesting in underground tank (Cap: 50000 lt.) from 300 sq.m office roof area Runoff from 5 ha area for oper well recharging		
	Roof water harvesting tank	KVK	2017	Size: L: 6.10 m W: 3.10 m H: 2.50 m	204285			
	Open well recharging structure	KVK	2013	Size: L: 2.0 m W: 2.0 m H: 1.5 m	9500			
	Bore well recharging structure	KVK	2018	Size: L: 1.5 m W: 1.0 m H: 1.0 m	12500	Rain water harvesting from 19 sq.m roof area for bore well recharging		or bore well
7	Threshing floor	_	_	-	_	_	-	_
8	Farm godown	KVK	2012	_	400000	_	-	-
9	Seed hub godown	ICAR	2019	196.80	3500000	-	-	-
10	ICT lab	-	-	-	-	-	-	-
11	Store room	RKVY	9-2-10	70.61	454500	-	-	_
12	Training hall	RKVY	11-2-10	190.99	1395800	-	-	_
13	Processing unit	RKVY	11-2-10	197.31	1536400	-	-	-
14	Implement shed	RKVY	9-2-10	77.33	297800	-	-	-

B) Vehicles

Type of vehicle	Year of purchase	Cost (Rs.)	Total kms. Running	Present status
Jeep (Bolero Neo) (GJ-3GA-1805)	2022	830000	26223	Working
Motorcycle (GJ-3DF-5781)	2010	50000	54769	Working
Tractor (Mahindra 39 HP) (GJ-3CL-7668)	2011	440000	-	Working
Mini Tractor (Mistubishi 18.5 HP) (GJ-3DD-8043)	2000	219000	-	Not working

Present Year of Name of the equipment Cost (Rs.) status purchase 2002 24900 Working Generator set Color TV (Akai) 2002 13850 Working LCD Project (Panasonic PT LC 50) 2002 Working 164368 PA Audio Vision System 2002 Working 20000 2003 Working Computer System (Intel Pentium IV) 32000 Computer Genius Desktop (Wipro Super) 2006 Working _ Refrigerator (Electronic Kelvinator) 2006 10.500 Working Solar steel digital water plant 2006 45000 Working Balaji Bio Gas Plant 2007 32000 Working Tractor Mounted Sprayer (Aspee) 2007 32000 Working Working Laptop Computer (HCL) 2008 47500 2009 Air Assisted Blower type Sprayer 98750 Working Photo Copier Machine (Richo) 2009 115300 Working LCD Projector (PT-CB50NTE-2GA - Panasonic) 2009 Working 92155 DVD Home theater system with Speaker (HCL) 2009 28000 Working LCD TV 22" (Model- 22LG30 - L. G.) 2009 27287 Working 2009 Cotton Stalk Shredder 121000 Working Groundnut Digger-Tractor Operated 2009 78500 Working 90000 Working Cultivator cum Rotavator 2009 Groundnut Decorticator 2009 95850 Working Multi Crop Thresher 2009 114000 Working **Processing Unit** 2009 1685000 Working Plantar – Tractor operator 2009 44000 Working Digital Camera (Nikon) P-90 12.1 2010 24300 Working 2016 Working Desktop Veriten PC (Acer) 46032 2016 Working Digital Xerox Machine with Printer 144391 K-yan Pro standerd 2016 110644 Working 79000 Home UPS inverters system 2016 Working Smart Television (LG) 2021 189975 Working Portable Sound System (AHUJA) 2022 Working 17000 Desktop computer (Dell) 2022 25000 Working Laptop (HP) 2022 40000 Working Air Conditioner -1.5 ton (Haier) 2022 37500 Working Desktop computer (Lenovo) 2022 63690 Working 2022 Working Desktop computer (Lenovo) 63690 2022 Working Desktop computer (Lenovo) 63690

C) Equipments & AV aids

1.8. Details of SAC meetings to be conducted in the year

Date	Name & Designation of Participants		Salient Recommendations	Action
Dutt	Nume & Designation of 1 at desputio			taken
10/03/	Prof. (Dr.) N. K. Gontia,	\succ	To make arrangement of	All
2022	Honorable Vice Chancellor, JAU, Junagadh.		seed selling at KVK,	Suggestion
	Dr. H. M. Gajipara,		Targhadia for seed	Accepted &
	Director of Extension Education, JAU, Junagadh		produced under Seed-hub	Implemented
	Dr. D. S. Hirpara, ADR & Research Scientist (DF),		project.	except
	MDFRS, JAU, Targhadia		MOU should be made with	FLDs on
	Dr. R. M. Satasiya, Principal, Polytechnic in Agril.			insect-pest
	Engg., JAU, Targhadia		different NGOs like	and disease
	Dr. G. V. Marviya, Senior Scientist & Head,		Reliance Foundation.	management
	KVK, JAU, Targhadia, Dist: Rajkot		In OFT on cotton, seed rate	in chilli,
	Dr. N. B. Jadav, Senior Scientist & Head,		3.75 kg/ha was mentioned	coriander
	KVK, JAU, Pipalia (Dhoraji), Dist. Rajkot		which should be corrected	and onion
	Dr. N. P. Shukla, Senior Scientist & Head,		as per recommended seed	was not
	KVK, Lokbharati Sanosara, Dist. Bhavnagar		rate of cotton.	conducted
	Anjanaben K. Baraiya, Scientist (Home Science),	\succ	Demonstration plot should	due to
	KVK, JAU, Jamnagar		be prepared for	vacant post
	Shri S. K. Joshi,		Organic/Natural farming at	of SMS
	Agriculture (Extension), Rajkot		KVK farm.	(Plant
	Shri R. K. Boghara,		More training should be	Protection)
	Dy. Director of Horticulture, Rajkot	Ĺ	planned on natural farming.	
	Dr. B. K. Dubey,		FLDs on crop residues	
	Deputy Director, NHRDF, Naranka, Rajkot		-	
	Shri D. U. Vaghela,		decomposing like wheat	
	Regional Training Centre, WALMI, Rajkot		straw should be arranged, if	
	Dr. S. K. Tiwari,		possible.	
	Technical Officer, NHRDF, Naranka, Rajkot	≻	Farm implements	
	Dr. H. C. Chhodvadia, Asso.Extn. Educationalist,		demonstration like Agri-	
	DEE office, JAU, Junagadh	_	drone should be arranged at	
	Prof. Pinky Sharma,		KVK, Targhadia.	
	AEE, DEE office, JAU, Junagadh	\succ	To arrange FLDs on insect-	
	Dr. Amit Patel, Dy. Manager,		pest and disease	
	Rajkot Dairy (Gopal Dairy),Rajkot	_	management in chilli,	
	Shri Kiran Patel,		coriander and onion.	
	Reliance Foundation, Jasdan, Dist: Rajkot	≻	FLD on Integrated Disease	
	Ritaben Vora, Centre for Environment Education,		Management (IDM) should	
	Jasdan, Dist: Rajkot	-	be arranged in cumin crop.	
	Shri T. B. Gohil, Project Director, DWDU, Rajkot Devendrabhai S. Moliya,	⊳	Number of soil samples	
		-	should be increased for soil	
	Village: Targhadi, Ta: Paddhari, Dist: Rajkot Shri Kalyanbhai C. Ramani,	_	analysis.	
	•		Documentation should be	
	Village: Lilapur, Ta: Jasdan, Dist.: Rajkot Sureshbhai B. Makwana,	ſ		
	Village: Bhoyra, Ta: Vinchhiya, Dist: Rajkot			
	Hareshbhai Bholabhai Kakadiya		NICRA project for ICAR	
	Village: Bhadla, Ta: Rajkot, Dist: Rajkot	1	Award.	
	Dineshbhai J. Rathod,		Information board on	
	Village: Nani Lakhavad, Ta: Jasdan, Dist: Rajkot		different Schemes of	
	Lilaben Chhaganbhai Lakhatariya,		Government of Gujarat	
	Village: Lalavadar, Ta: Vinchhiya, Dist: Rajkot		should be displayed at	
	Jamnaben Mohanbhai Dabhi,		KVK.	
	Village: Barvada, Ta: Jasdan, Dist: Rajkot			
L		1		

2. DETAILS OF DISTRICT

2.1. Major farming systems/enterprises (based on the bench mark analysis made by the KVK)

Sr. No	Farming system/enterprise
1	Groundnut – Wheat/ Cumin/ Chick pea, Cotton – Summer Groundnut/ Sesame/ Pulses
2	Dairy product
3	Farm waste management specially for cotton stalk
4	Fruit and vegetable preservation
5	Value addition in groundnut, sesame, gram, etc.

2.2 Description of Agro-climatic Zone & major agro ecological situations a) Soil type

a)	Sol	l type	
	C		

Sr. No	Agro-climatic Zone	Characteristics
1.	North	The total geographical area of North Saurashtra Agro Climatic Zone is 35.2
	Saurashtra	Lacs ha. Out of total area, 73.40 per cent area falls under arid and semi-arid
	Agro	region. The soils of this zone are shallow to moderately deep. The soils of
	Climatic	Rajkot district is low in their availability of nitrogen while medium in
	Zone (VI)	phosphorus and high in available potash except the available phosphorus and
		potash is in medium category in adopted villages. Monsoon commences
		usually by the end of June and withdraws by middle of September. Average
		annual rainfall of district is 648 mm while 725.3 mm during 2022.

b)Topography

	Sr. No Agro ecological situation		Characteristics
	1.	Situation No. 4	Shallow black soil with 500-600 mm Rainfall
ĺ	2.	Situation No. 14	Hilly Soils with 500-600 mm Rainfall

2.3 Soil types

Sr. No	Soil type	Characteristics	Area in ('000) ha
1.	Clay to clay loam	Medium black calcareous soil	258
2.	Sandy Clay Loam to Clayey	Well drained soil with rapid permeability	301
3.	Sandy to Sandy loam 10 cm,	Well drained soils	
	Calcareous		

2.4. Area, Production and Productivity of major crops cultivated in the district (2021-22)

Sr. No.	Сгор	Area (ha)	Production (Tone)	Productivity (Kg. /ha)
1	Groundnut	271007	553556	2043
2	Cotton	198220	295702	1492
3	Sesamum	2041	1973	967
4	Castor	5035	13122	2606
5	Pearl millet	497	470	947
6	Green gram	1978	1246	630
7	Black gram	1446	1572	1087
8	Pigeon pea	3680	6949	1888
9	Wheat	91520	366258	4002
10	Chick pea	145509	327645	2252
11	Cumin	22874	17737	775
12	Groundnut (Summer)	1850	4233	2288
13	Pearl millet (Summer)	522	1486	2846

Source: District agriculture department

Month	Rainfall (mm)	Tempera	ature ⁰ C	Relative Humidity (%)	
		Maximum	Minimum	Maximum	Minimum
January	1.1	26.3	10.9	79.9	51.0
February	0.0	30.8	12.8	74.6	26.4
March	0.0	37.3	17.9	65.9	27.2
April	0.0	41.0	21.9	74.0	20.2
May	0.0	41.0	25.4	77.2	30.5
June	47.3	38.6	25.7	77.1	43.1
July	376.6	31.4	23.9	89.3	79.0
August	147.0	31.3	23.4	88.5	69.8
September	153.3	32.6	22.6	86.8	59.4
October	0.0	34.7	20.2	70.7	36.3
November	0.0	33.0	15.8	58.4	25.6
December	0.0	30.0	13.8	56.5	28.2
Total/Ave.	725.3	34.0	19.5	74.9	41.4

2.4 Weather data (2022)

2.6 Production and productivity of Livestock, Poultry, Fisheries etc. in the district

Category	Population	Production (tonne)	Productivity
Cattle	1		
Crossbred	4,52,000	33,26,900 (Milk)	
Indigenous			
Buffalo	3,62,000	52,84,700 (Milk)	
Sheep	2,63,400	2,66,810 (Wool)	
Goats	1,97,000	2,31,240 (Milk)	
Pigs	1,000		
Crossbred			
Indigenous			
Rabbits			
Poultry		Production of eggs (No.)	
Hens (Crossbred)	13,400	32,52,000 (Egg)	
Desi	7,800	3,92,000 (Egg)	
Category			
Fish (Reservoir)			

2.7 Details of Operational area / Villages

Sr. No.	Taluka	Name of the block	Name of the village	Major crops & enterprises	Major problem identified	Identified Thrust Areas	
1	Jasdan	Cluster I	Barvala Kamlapur Lilapur Shivrajpur Nani lakhavad	Groundnut, Cotton, Sesame, Wheat, Cumin, Chickpea, Corlic	Pink ball worm in cotton, Heavy infestation of sucking pest in cotton, Phytopthora disease in sesame and White graph	• Reducing the	
2	Vinchhiya	Cluster II	Amrapur Hingolgadh Gundala Bhoyara Lalavadar	Garlic, Onion. * Enterprises are dairy business, Vermi	and White grub infestation in groundnut, Long inter-calving period in buffalo, Nutritional	 inter-calving period in buffalo Motivate the farmers for arid horticultural 	
3	Rajkot	Cluster III	Haripar Makanpar Umrali Khachharia Hodathali	Vermi composting, Preparation of roasted groundnut and chikki from groundnut and sesame	composting, Preparation of roasted groundnut and chikki from groundnut	deficiency in animal feed and fodder, Less area under horticultural crops, Anemia problem in adolescent girls	 crops. Efficient use of irrigation water To create the awareness for grading, processing and marketing (value addition)

2.8 Priority thrust areas

Sl. No	Crop/ Enterprise	Thrust area
1	Groundnut, Sesame etc	Increasing the productivity of the major crops by adopting the recommended dry farming technologies and to create awareness for value addition.
2	Water conservation	<i>In situ</i> soil moisture conservation and rainwater harvesting. Use of cotton stalk for organic manure.
3	Cotton	Motivating cotton growers to adopt IPM and INM practices for reducing the cost of production.
4	Arid Fruits	Promoting the arid horticulture.
5	Livestock production	Enhancing productivity of milch animals by proper feeding and breeding management.
6	Women empowerment	Providing self employment through skill oriented income generating activities
7	Agriculture	Developing interest among youth for agriculture as a profession.
8	Horticulture	Value addition in agriculture produces through proper grading, processing, marketing and information technology.
9	PHT	Minimizing the post harvest losses and to create the awareness for proper storage.
10	Income generating activities	Self employment among rural youth and skill oriented income generating activities.
11	Nutrition management	Care and importance of nutrition in children & pregnant women.

3. TECHNICAL ACHIEVEMENTS

	0	FT		FLD				
		1		2				
Numb	Number of OFTs		Number of farmers		Number of FLDs		Number of farmers	
Targets	Achievement	Targets	Achievement	Targets	Achievement	Targets	Achievement	
9	9	23	23	14	14	175	175	

3.1. A. Details of target and achievements of mandatory activities

Training				Extension Programmes			
	, •	3		4			
Numbe	r of Courses	Number of Participants		Number of Programmes		Number of participants	
Targets	Targets Achievement		Achievement	Targets	Achievement	Targets	Achievement
81	53	2025	1406	-	1111	-	9889

Seed Pro	oduction (Qtl.)	Planting materials (Nos.)		
	5	6		
Target	Target Achievement		Achievement	
-	- 141.25		-	

Livestock, poultry	v strains and fingerlings (No.)	Bio-products (Kg)		
	7	8		
Target	Target Achievement		Achievement	
		-	-	

3.1. B. Operational areas details during 2022

S.No.	Major crops & enterprises being practiced in cluster villages	Prioritized problems in these crops/ enterprise	Extent of area (Ha/No.) affected by the problem in the district	Names of Cluster Villages identified for intervention	Proposed Intervention (OFT, FLD, Training, extension activity etc.)*
1	Cotton	Low yield of cotton	-	All cluster	OFT, Training
	Groundnut	Variety	-	All cluster	FLD
2		White grub	-	All cluster	FLD and Training
		Stem rot	-	All cluster	FLD and Training
	Cumin	Wilt in cumin	-	All cluster	FLD, OFT and
3		Low yield due to	-	All cluster	Training
		sowing method and over irrigation			
4	Gram	Variety	-	All cluster	FLD and Training
5	Chili	Leaf curl and fruit	-	All cluster	OFT
		rot			
6	Tomato	Variety & Leaf curl	-	All cluster	FLD and OFT
7	Brinjal	Variety	-	All cluster	FLD and Training

3.2. Technology Assessment (Kharif 2022, Rabi 2021-22, Summer 2022)

Thematic areas	Cereals	Oilseeds	Pulses	Commer cial Crops	Vegetables	Fruits	Flower	Plant ation crops	TOTAL
Integrated Nutrient									
Management									
Varietal Evaluation					1				1
Integrated Pest									
Management									
Integrated Crop									
Management									
Integrated Disease				1	1				2
Management									
Small Scale Income									
Generation									
Enterprises									
Weed Management									
Resource				1					1
Conservation									
Technology									
Farm Machineries									
Integrated Farming				1					1
System									
Seed / Plant									
production									
Value addition									
Drudgery Reduction									
Storage Technique			1						1
Mushroom cultivation									
Natural Farming		1							1
TOTAL		1	1	3	2				7

A.1. Abstract on the number of technologies assessed/refined in respect of crops

A.2 Abstract on the number of technologies assessed in respect of livestock enterprises

Thematic areas	Cattle	Poultry	Sheep	Goat	Piggery	Fisheries	TOTAL
Evaluation of Breeds							
Nutrition Management	1						1
Disease of Management	1						1
Value Addition							
Production and Management							
Feed and Fodder							
Small Scale income generating							
enterprises							
TOTAL	2						2

B. Achievements on technologies Assessed

Thematic areas	Сгор	Name of the technology assessed	No. of trials	Number of farmers	Area in ha (Per trail covering all the Technological Options)
Integrated Nutrient Management					
Varietal Evaluation	Tomato	Response of new release variety of Tomato GT-6 on leaf curl occurrence and yield	1	3	0.4
Integrated Pest Management					
Integrated Crop Management					
Integrated Disease Management	Chili	Effect of the fungicide on disease of chili	1	3	0.4
	Cumin	Use of <i>Trichoderma</i> for wilt disease management in cumin	1	3	0.4
Small Scale Income Generation Enterprises					
Weed Management					
Resource Conservation Technology	Cumin	Performance of drip irrigation with line sowing method in cumin	1	3	0.4
Farm Machineries					
Integrated Farming System	Cotton	De-topping in Cotton	1	3	0.4
Seed / Plant production					
Value addition					
Drudgery Reduction					
Storage Technique	Pules	Preservation techniques of different pulses with organic methods	1	5	-
Mushroom cultivation					
Natural Farming	Ground- nut	Natural farming in <i>Kharif</i> Groundnut	1	1	0.4
Total			7	21	2.4

B.2. Technologies assessed under Livestock and other enterprises :

Thematic areas	Name of the livestock enterprise	Name of the technology assessed	No. of trial s	No. of farmer s
Evaluation of breeds				
Nutrition management		Chelated & Area Specific Mineral mixture for dairy Cows	1	1
Disease management		Fortified Health management for reducing calf mortality	1	1
Value addition				
Production and management				
Feed and fodder				
Small scale income generating enterprises				
Total	•		2	2

C. 1. Results of Technologies Assessed

Results of On Farm Trial

Crop/ enterprise	Farming situation	Problem definition	Title of OFT	No. of trials	Technology Assessed/Refined	of assessment	•	assessment	Feedback from the farmer	Any refinement needed	Justificatio n for refinement
1	2	3	4	5	6	7	8	9	10	11	12
Groundnut	Rainfed	Higher use of chemical fertilizers	Natural farming in <i>Kharif</i> Groundnut	1	 T1: Seed treatment through fungicides, Use of chemical fertilizers, Use of Insecticides-Pesticides (Farmers Practices) T2: FYM @ 10 t/ha, Use of PSB@ 8g/kg seeds, Use of <i>Trichoderma viride</i> @ 2.5 kg/ha, Use of <i>Beauveria bassiana</i> @ 80 mi per pump, <i>Metarhyzium anisopliae</i> @ 5 kg/ha, <i>Pseudomonas fluorescens</i> @ 2.5 kg/ha (Recommended Practices) T3: Bijamrut @ 20 lit./100 kg seeds, Ghan Jivamrut@ 200 kg/acre in basal dose and 100 kg at flowering stage, Jivamrut @ 200 lit./acre, Use of Dasparni Ark@ Agniastra and Brahmastra @ 6 to 8 lit. dissolved in 100 to 200 lit. of water and spray in 1 acre without water (Interventions) 	Yield Kg/ha and White grub infestation (%)					
Cotton	Rainfed	Low Yield of Cotton	De- topping in Cotton	3	 T1: Farmers Practices T2: De-topping at 75 DAS T3: De-topping of monopodial branches at 75 DAS & 90 DAS 	Seed cotton yield (kg/ha) and No. of bolls/plant (10 plants)					

Chili	Irrigated	Problem of diseases in chilli	Effect of the fungicide on disease of chilli	3	 T1: 2 sprays of Hexaconazol @ 1ml per litre @ 15 days interval T2: Seed treatment of Carbendazime @ 3 gm per seed + soil application of Trichoderma @2.5 kg/ha + Soil drenching of COC@ 40gm/10 lit T3: 2 sprays of Hexaconazol @ 1ml per litre @ 15 days interval + Soil drenching of COC @ 40gm/10 lit 	Yield Kg/ha and infestati on (%)			
Tomato	Irrigated	To increase yield of Tomato by decreasing sucking pest infestation by sowing tolerant variety	Response of New Release Variety of Tomato GT-6 on leaf curl occurance and yield.	3	 T1 : :Sowing of Local Variety + any Pesticides. T2 : Sowing of GT-6 Variety + any Pesticides. T3 : :Sowing of GT-6 Variety and foliar sprayings of Acephate 75 WP @ 1.5 g / liter 10 days after transplanting, Fipronil 5 SC @ 1.5 ml / liter 20 DAT, and Imidacloprid 70 WG @ 2g / 15 liter 40 DAT 	Yield Kg/ha and infestati on (%)			
Cumin	Irrigated	Heavy incidence of wilt disease in cumin	Use of Trichode rma for wilt disease managem ent in cumin	3	 T1: No use of trichoderma or fungicide at the time of sowing T2: Trichoderma @ 5 kg /ha with organic manure @500 kg / ha at the time of sowing. T3: Application of Trichoderma @ 5 kg /ha along with organic manure @500 kg / ha at the time of sowing and second application of Trichoderma @ 5 kg /ha along with organic manure by broadcasting method at 15 days after germination. 	Yield Kg/ha and infestati on (%)			

Cumin	Irrigated	Low yield due to sowing method and over irrigation	Performan ce of drip irrigation with line sowing method in cumin	3	 T1: Broad casting method without drip irrigation (Farmer's practices) T2: Line sowing (20 cm) with drip irrigation (Recommended technology) 	Yield Kg/ha and B:C Ratio			
Cows		Low milk production & infertility problems in dairy cow	Chelated & Area Specific Mineral mixture for dairy Cows	1	 T1: Farmers practices (Control) T2: Cow Fed with 50 gms/day chelated mineral mixture supplementation T3: Cow fed with 50 gms/day chelated & area specific mineral mixture 	Milk Yield (Lit/day) and Estrus after calving (days			
Calf		During winter season calf mortality due to Pneumonia, diarrhea & low body weight	Fortified Health managem ent for reducing calf mortality		T1: Colustrum after birth upto 3 days T2: T1+ Antibiotics (Oxytetracyclin) after 5-7 days T3: T1+ deworming (Panacure) (1 st dose -21 days and 2 nd dose -42 days) T4: T1 +T2+T3 (colostrum feeding + Antibiotic + deworming)	calf survival rate (%) and Body weight (%)			
Preserva- tion techniques	8	Lack of knowledge about phase preservation (damage during storage about 30 to 45 percent)	Preserva- tion techniques of different pulses with organic method	5	T1 Use of neem leaves T2 Use of castor oil T3 use of Plastic bag	Insect infestation after 6 months			Use of castor oil is very effective to storage of different pulses

Technology Assessed	Source of Technology	Production	Please give the unit (kg/ha, t/ha, lit/animal, nuts/palm, nuts/palm/year)	Net Return (Profit) in Rs. / unit	BC Ratio
13	14	15	16	17	18
Natural farming in <i>Kharif</i> Groundnut					
T1 Seed treatment through fungicides, Use of chemical fertilizers, Use of Insecticides-Pesticides (Farmers Practices)	NCOF, Gaziabad (U.P.)	1475 (42)	Kg/ha (% Infestation of white grub)	25,100	2.8
T2 FYM@ 10 t/ha, Use of PSB@ 8g/kg seeds, Use of Trichoderma viride@ 2.5 kg/ha, Use of Beauveria bassiana @ 80 mi per pump, Metarhyzium anisopliae @ 5 kg/ha, Pseudomonas fluorescens @ 2.5 kg/ha (Recommended Practices)		1350 (43)	Kg/ha (% Infestation of white grub)	23,200	2.5
T3 Bijamrut@ 20 lit./100 kg seeds, Ghan Jivamrut@ 200 kg/acre in basal dose and 100 kg at flowering stage, Jivamrut@ 200 lit./acre, Use of Dasparni Ark@ Agniastra and Brahmastra@6 to 8 lit. dissolved in 100 to 200 lit. of water and spray in 1 acre, Nimastra @ 200 lit. spray in 1 acre without water (Interventions)		1200 (50)	Kg/ha (% Infestation of white grub)	21,000	2.1
De-topping in Cotton					
T1 Farmers Practices	Junagadh Agricultural University	3500 (32.00)	Kg/ha (No. of bolls/plant (10 plants)	313000	4.03
T2 De-topping at 75 DAS		3600 (38.00)	Kg/ha (No. of bolls/plant (10 plants)	390000	4.92
T3 De-topping of monopodial branches at 75 DAS & 90 DAS		3900 (40.00)	Kg/ha (No. of bolls/plant (10 plants)	411000	5.28

Effect of the fungicide on disease of chilli T1: spray of Hexaconazol @ 1ml per litre @ 15 days	JAU, Junagadh	9917	Kg/ha	07750	0.01
interval	_	(15)	(% plant infestation)	97750	2.81
F2 : Seed treatment of Carbendazime @ 3 gm per seed + soil application of Trichoderma @2.5 kg/ha + Soil drenching of COC@ 40gm/10 lit		13167 (8)	Kg/ha (% plant infestation)	145275	3.78
F3 : 2 spray of Hexaconazol @ 1ml per litre @ 15 days interval + Soil drenching of COC@ 40gm/10 lit		10125 (10)	Kg/ha (% plant infestation)	98875	2.87
Response of New Release Variety of Tomato GT-6	on leaf curl occurrence	ce and yield			
1 : :Sowing of Local Variety + any Pesticides.	Junagadh Agriculture	15000 (9 to 10)		70700	2.40
C2 : Sowing of GT-6 Variety + any Pesticides.	University, Junagadh	21000 (3 to 4)	T Z (1	103250	3.06
F3 : Sowing of GT-6 Variety and foliar sprayings of Acephate 75 WP @ 1.5 g / liter 10 days after transplanting, Fipronil 5 SC @ 1.5 ml / liter 20 DAT, and Imidacloprid 70 WG @ 2g / 15 liter 40 DAT	C	29000 (1 to 2)	Kg/ha (% plant infestation)	109250	3.11
Jse of Trichoderma for wilt disease management i					T
T1 : No use of <i>Trichoderma</i> or fungicide at the time of sowing	JAU, Junagadh	700 (15 to 17)	Kg/ha (% plant infestation)	101050	3.9
T2 : Application of Trichoderma @ 5 kg /ha with organic manure @500 kg / ha at the time of sowing		980 (8 to 9)	Kg/ha (% plant infestation)	129050	4.66
F3 : Application of Trichoderma @ 5 kg /ha along with organic manure @500 kg / ha at the time of sowing and second application of Trichoderma @ 5 kg /ha along with organic manure by broadcasting method at 15 days after germination.		1080 (3 to 4)	Kg/ha (% plant infestation)	144400	4.79

Performance of drip irrigation with line sowing me						
T1 : Broad casting method without drip irrigation (Farmer's practices)	RTTC, JAU, Junagadh	945	Kg/ha	110975	3.13	
T2 : Line sowing (20 cm) with drip irrigation (Recommended technology)		1125	Kg/ha	135872	4.53	
Chelated & Area Specific Mineral mixture for dain	ry Cows					
T1: Farmers practices (Control)	NDRI, Kernal, Hariyana	7.4 and 138	Milk Yield (Lit/day) and Estrus after calving (days)	-	-	
T2: Cow Fed with 50 gm/day chelated mineral mixture supplementation		8.6 and 111	Milk Yield (Lit/day) and Estrus after calving (days)	-	-	
T3: Cow fed with 50 gm/day chelated & area specific mineral mixture		9.4 and 88	Milk Yield (Lit/day) and Estrus after calving (days)	-	-	
Fortified Health management for reducing calf mo	rtality				·	
T1 : Colustrum after birth upto 3 days	IVRI, Izzatnagar	40 and 10	calf survival rate (%) and Body weight (%)			
T2: T1+ Antibiotics (Oxytetracyclin) after 5-7 days		71 and 12	calf survival rate (%) and Body weight (%)			
T3 : T1+ deworming (Panacure) (1st dose -21 days and 2nd dose -42 days)		69 and 20	calf survival rate (%) and Body weight (%)			
T4 : T1 +T2+T3 (colostrum feeding + Antibiotic + deworming)		89 and 20	calf survival rate (%) and Body weight (%)			

C2. Details of each On Farm Trial for assessment to be furnished in the following format separately as per the following details

<u>OFT-1</u>

- 1. Title of Technology Assessed: Natural farming in Kharif Groundnut
- 2. Problem Definition: Deteriorate in yield and quality of groundnut
- 3. Details of technologies selected for assessment:
 - 1. Seed treatment through fungicides, Use of chemical fertilizers, Use of Insecticides-Pesticides (Farmers Practices)
 - 2. FYM@ 10 t/ha, Use of PSB @ 8g/kg seeds, Use of *Trichoderma viride* @ 2.5 kg/ha, Use of *Beauveria bassiana* @ 80 mi per pump, *Metarhyzium anisopliae* @ 5 kg/ha, *Pseudomonas fluorescens* @ 2.5 kg/ha (Recommended Practices)
 - 3. Bijamrut @ 20 lit./100 kg seeds, Ghan Jivamrut @ 200 kg/acre in basal dose and 100 kg at flowering stage, Jivamrut @ 200 lit./acre, Use of Dasparni Ark @ Agniastra and Brahmastra@6 to 8 lit. dissolved in 100 to 200 lit. of water and spray in 1 acre, Nimastra @ 200 lit. spray in 1 acre without water (**Interventions**)
- 4. Source of technology: NCOF, Gaziabad (U.P.)
- 5. Production system and thematic area: NRM
- 6. Performance of the Technology with performance indicators:

No		Name of the Village	Yield (Kg/ha)				
INU	farmer	-	T1	T2	T3		
1	1 KVK Farm Targhadia		1475	1350	1200		
	Average	e	1475	1350	1200		

Note: In T3 Treatment due to heavy Infestation of white grub, plant population was reduced to 50%

- 7. Feedback, matrix scoring of various technology parameters recorded through farmer's participation / other scoring techniques: Farmers practices has given higher production as compare to recommended practices and interventions.
- 8. Final recommendation for micro level situation: Yield can be increased and stem rot infestation can be reduced with use of *Trichoderma* in mixture with castor cake.
- 9. Constraints identified and feedback for research: White grub infestation was observed more in recommended practices and interventions treatment.
- 10. Process of farmers participation and their reaction: The farmers participation in natural Farming is enhanced day by day and they adopting natural farming on their fields also.

<u>OFT-2</u>

- 1. Title of Technology Assessed : De-topping in Cotton
- 2. Problem Definition : Low Yield of Cotton
- 3. Details of technologies selected for assessment :
 - 1. Farmers Practices
 - 2. De-topping at 75 DAS
 - 3. De-topping of monopodial branches at 75 DAS & 90 DAS
- 4. Source of technology: JAU
- 5. Production system and thematic area: NCM
- 6. Performance of the Technology with performance indicators:

N	Name of the farmer	Name of the	Unit		Result	
No		Village		T1	T2	T3
1	Devabhai Dodiya	Anadpar (Ta: Raikot)	Yield (Kg/ha)	3350	3550	3800
2	Vallabhbhai Jamod	Revaniya	× 8 · · · /	3550	3600	3900
3	Naranbhai Jamod	(Ta: Vinchhiya)		3600	3650	4000
	Average	3500	3600	3900		

- 7. Feedback, matrix scoring of various technology parameters recorded through farmer's participation / other scoring techniques : Interventions treatment has given higher production as compare to farmers practice and recommended treatment.
- 8. Final recommendation for micro level situation : Yield can be increased through Detopping of monopodial branches at 75 DAS & 90 DAS
- 9. Constraints identified and feedback for research : De-topping is much laborious work and taking time for operation.
- 10. Process of farmers participation and their reaction : Farmers are aware about de-topping in cotton and adopting this technology in their farms.

- 1. Title of Technology Assessed : Effect of the fungicide on disease of chilli
- 2. Problem Definition : Wilt diseases in chilli
- 3. Details of technologies selected for assessment :
 - T1: 2 spray of Hexaconazol @ 1ml per litre @ 15 days interval
 - T2: Seed treatment of Carbendazime @ 3 gm per seed + soil application of Trichoderma @2.5 kg/ha + Soil drenching of COC@ 40gm/10 lit
 - T3: 2 spray of Hexaconazol @ 1ml per litre @ 15 days interval + Soil drenching of COC@ 40gm/10 lit
- 4. Source of technology : JAU
- 5. Production system and thematic area : IDM

6 Performance of the Technology with performance indicators:

No	Name of the farmer	Name of the	Unit	Result			
		Village		T1	T2	Т3	
1	Rameshbhai Khimabhai Sariya	9750	13125	9625			
2	Rahulbhai Vinubhai Sariya	(Kg/ha)	10625	12625	9750		
3	Hareshbhai Khimabahi Sariya		9375	13750	11000		
	Average yie	9917	13167	10125			
	(% plant infesta	15	8	10			

- Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques : T2 has given higher production as compare to T1 & T3
- 8. Final recommendation for micro level situation : Seed treatment of Carbendazime @ 3 gm per seed + soil application of Trichoderma @2.5 kg/ha + Soil drenching of COC@ 40gm/10 lit should be adopted for wilt diseases control in chilli.
- 9. Constraints identified and feedback for research : Farmers are less aware about latest technologies and recommended practices to control wilt in chilli.
- 10. Process of farmers participation and their reaction : Some Farmers have started to adopt new technology for better production in chilli.

- 1. Title of Technology Assessed : **Response of New Release Variety of Tomato GT-6 on** leaf curl occurrence and yield
- 2. Problem Definition: Low yield of Tomato and Heavy Infestation of leaf Curl Virus
- 3. Details of technologies selected for assessment :
 - T1: Sowing of Local Variety + any Pesticides.
 - T2: Sowing of GT-6 Variety + any Pesticides.
 - T3: Sowing of GT-6 Variety and foliar sprayings of Acephate 75 WP @ 1.5 g / liter 10 days after transplanting, Fipronil 5 SC @ 1.5 ml / liter 20 DAT, and Imidacloprid 70 WG @ 2g / 15 liter 40 DAT
- 4. Source of technology: JAU
- 5. Production system and thematic area: IPM

6 Performance of the Technology with performance indicators:

N .7	Name of the farmer	Name of the	Unit		Result	
No		Village		T1	T2	T3
1	Mathurbhai Maganbhai Jamod	14600	20500	28600		
2	Dalubhai Khimabhai Dervaliya	Vangdhra15000210(Ta: Vinchhiya)210				28900
3	Jasmatbhai Zverbhai Dervadiya			15300	21700	29400
	Average y		15000	21000	29000	
	(% plant infe		9 to 10	3 to 4	1 to 2	

- 7. Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques: Interventions has given higher production as compare to Farmers practices and recommended practices.
- Final recommendation for micro level situation: Farmers should grow latest variety of Tomato GT-6 and carried out foliar sprayings of Acephate 75 WP @ 1.5 g / liter 10 days after transplanting, Fipronil 5 SC @ 1.5 ml / liter 20 DAT, and Imidacloprid 70 WG @ 2g / 15 liter 40 DAT
- 9. Constraints identified and feedback for research: Farmers are less aware about latest technologies.
- 10. Process of farmers participation and their reaction: Farmers getting trainings and knowledge for latest technologies for better production in tomato

- 1. Title of Technology Assessed: Use of *Trichoderma* for wilt disease management in cumin
- 2. Problem Definition: Heavy incidence of wilt disease in cumin
- 3. Details of technologies selected for assessment:
 - T1: No use of *Trichoderma* or fungicide at the time of sowing
 - T2: Application of *Trichoderma* @ 5 kg /ha with organic manure @500 kg / ha at the time of sowing.
 - T3: Application of *Trichoderma* @ 5 kg /ha along with organic manure @500 kg / ha at the time of sowing and second application of *Trichoderma* @ 5 kg /ha along with organic manure by broadcasting method at 15 days after germination.
- 4. Source of technology: JAU
- 5. Production system and thematic area: IDM
- 6. Performance of the Technology with performance indicators:

NT.	Name of the farmer	Name of the	Unit		Result	
No		Village	-	T1	T2	T3
1	Jahabhai Kadvabhai Zapadia	Barvala (Ta: Jasdan)	Yield (Kg/ha)	725	995	1100
2	Bhikhubhai Jasmatbhai Sakariya		-	680	980	1065
3	Mukeshbhai Dhirubhai Sakariya		-	695	965	1075
	Average yield	700	980	1080		
	(% plant infestation)				8 to 9	3 to 4

- Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques: T3 has given higher production as compare to T1 & T2
- 8. Final recommendation for micro level situation: This is first year of trial final result will be obtained after two-year trial
- 9. Constraints identified and feedback for research: T3 has given higher production as compare to T2 & T3
- 10. Process of farmers participation and their reaction: This was first trial for experimentation and it will be waited for farmer participation & reaction

- 1. Title of Technology Assessed: **Performance of drip irrigation with line sowing method** in cumin
- 2. Problem Definition: Low yield due to sowing method and over irrigation
- Details of technologies selected for assessment:
 T1: Broad casting method without drip irrigation (Farmer's practices)
 T2: Line sowing (20 cm) with drip irrigation (Recommended technology)
- 4. Source of technology: RTTC, JAU, Junagadh
- 5. Production system and thematic area: Resource Conservation Technology
- 6. Performance of the Technology with performance indicators:

No	Name of the farmer	Name of the	Yield (kg/ha)		
INU		Village	T1	T2	
1	Bhaveshbhai Bhanabhai Makwana	Bhoyara	970	1165	
2	Bholabhai Shambhubhai Makwana	(Ta: Vinchhiya)	925	1090	
3	Dehabhai Manjibhai Makwana		940	1120	
	Average		945	1125	

- 7. Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques: Line sowing with drip irrigation gave higher production of cumin as compare to broad casting method with flood irrigation.
- 8. Final recommendation for micro level situation: Yield can be increased and disease infestation can be reduced with use of drip irrigation in line sowing of cumin.
- 9. Constraints identified and feedback for research: -
- 10. Process of farmers participation and their reaction: Low Disease infestation in line sowing cumin crop with controlled irrigation (i.e. drip irrigation)

1. Title of Technology Assessed: Chelated & Area Specific Mineral mixture for dairy Cows

- 2. Problem Definition: Low milk production & infertility problems in dairy cow
- 3. Details of technologies selected for assessment:
 - 1. Farmers practices (Control)
 - 2. Cow Fed with 50 gms/day chelated mineral mixture supplementation
 - 3. Cow fed with 50 gms/day chelated & area specific mineral mixture
- 4. Source of technology: NDRI, Kernal, Hariyana
- 5. Production system and thematic area: Nutrition Management
- 6. Production system and thematic area: Nutrition Management
- 7. Performance of the Technology with performance indicators:

No	Name of the farmer	Name of the	Unit	Result		
INU		Village		T1	T2	T3
1	Rekhaben Dhirubhai Nakrani	Umrali	Milk Yield (Lit/day)	7.4	8.6	9.9
			Estrus after calving (days)	138	111	88

8. Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques: T3 treatment has given higher production as compare to T1 & T2

9. Final recommendation for micro level situation: Milk Yield can be increased and estrus after calving can be reduced with use of chelated & area specific mineral mixture

- 10. Constraints identified and feedback for research: Milk Yield can be increased and estrus after calving can be reduced with use of chelated & area specific mineral mixture
- 11. Process of farmers participation and their reaction: This was first trial for experimentation and it will be improved and repeated nest.

- 1. Title of Technology Assessed: Fortified Health management for reducing calf mortality
- 2. Problem Definition: During winter season calf mortality due to Pneumonia, diarrhea & low body weight
- 3. Details of technologies selected for assessment:
 - T1: Colustrum after birth upto 3 days
 - T2: T1+ Antibiotics (Oxytetracyclin) after 5-7 days
 - T3: T1+ deworming (Panacure) (1st dose -21 days and 2nd dose -42 days)
 - T4: T1 +T2+T3 (colostrum feeding + Antibiotic + deworming)
- 4. Source of technology: IVRI, Izzatnagar
- 5. Production system and thematic area: Disease Management
- 6. Production system and thematic area: Health Management
- 7. Performance of the Technology with performance indicators:

Na	Name of the	Name of the	Unit	Result			
No	farmer	Village		T1	T2	T3	T4
	Bhaveshbhai	Hodathali	calf survival	40%	71%	69%	89%
1	Jadavbhai		rate				
	Sorthiya		(%)				
			Body weight	10%	12%	20%	20%
			(%)				

- 8. Feedback, matrix scoring of various technology parameters done through farmer's participation / other scoring techniques: T4 has given higher calf survival rate than T1, T2, T3 and higher body weight gain as compare to T1 & T2
- 9. Final recommendation for micro level situation: This is first year of trial final result will be obtained after two-year trial
- 10. Constraints identified and feedback for research: T4 has given higher calf survival rate as compare to T1, T2 & T3
- 11. Process of farmers participation and their reaction: This was first trial for experimentation and it will be waited for farmer participation & reaction

OFT-9

1. Title of Technology Assessed: **Preservation techniques of different pulses with organic method**

No. of Trial	Name of crop	Technology options	Data on Parameter Insect infestation (%) after 6 months
	Chana dal	T1 Use of dry neem leaves	13
		T2 Use of castor oil	4
		T3 Use of airtight plastic bag	8
5		T4 Without any treatment	21
5		T1 Use of dry neem leaves	9
	Croop grom	T2 Use of castor oil	3
	Green gram	T3 Use of airtight plastic bag	7
		T4 Without any treatment	22

Performance of technology assessed:

3.3. FRONTLINE DEMONSTRATION

A. Follow-up for results of FLDs implemented during previous years

List of technologies demonstrated during previous year and popularized during 2022 and recommended for large scale adoption in the district

Image: No. of villages to the Extension systemNo. of villages farmersArea to the Extension systemNo. of villages farmersArea to ha ha1GroundnutICMVarietal + IPMTo test yield potentiality of newly released groundnut variety201201502GroundnutIPMVarietal evaluation+ IPM through ChlorpyriphosManagement of white grub through seed treatment151051253ChickpeaICMVarietal evaluation+ IPM through ChlorpyriphosTo test yield potentiality of newly released gram variety181853254WheatICMINM730455CuminICMIPM PMManagement of pest wariety555456CuminICMLine sowing evaluationManagement of pest wariety8801207Seasonal vegetablesNutritional securityKitchen garden released variety1545-9BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety12302010TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient Management ManagementBypass Protein inc	S.	Crop/	Thematic	Technology	Details of		ontal spre	
Image: second systemto the Extension systemvillagesfarmersin ha1GroundnutICMVarietal + INM+IDM + IPMTo test yield potentiality of newly released groundnut variety201201502GroundnutIPMVarietal evaluation+ IPM through ChlorpyriphosManagement of white grub through seed treatment151051253ChickpeaICMVarietal Potentiality of newly released gram variety730454WheatICMINMTo test yield potentiality of newly released gram variety151254WheatICMINM730455CuminICMIPM maagement of pest watery555456CuminICMLine sowing evaluationManagement of pest watery88001207Seasonal VegetablesICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety12302010TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient Management ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient Management Management <t< th=""><th>No</th><th>Enterprise</th><th>Area*</th><th>demonstrated</th><th>popularization</th><th></th><th></th><th></th></t<>	No	Enterprise	Area*	demonstrated	popularization			
ImageImageImageImage1GroundnutICMVarietal + INM+IDM + IPMTo test yield potentiality of newly released groundnut variety201201502GroundnutIPMVarietal evaluation+ IPM through ChlorpyriphosManagement of white grub through seed treatment151051253ChickpeaICMVarietal+ INM+IDM+IPM Pareleased gram varietyTo test yield potentiality of newly released gram variety181853254WheatICMINM730455CuminICMIPM PMManagement of pest wariety555456CuminICMLine sowing evaluationManagement of pest disease8801207Seasonal VegetablesNutritional evaluationKitchen garden potentiality of newly released variety725129BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety1435-11BuffaloNutrient ManagementBypass Protein (Lawa)Increased milk production1435-13CowNutrient ManagementMareal managementIncreased milk fat % production1530-14FodderFodderFodder </th <th></th> <th></th> <th></th> <th></th> <th>00</th> <th></th> <th></th> <th></th>					00			
1 Groundnut ICM Varietal + INM+IDM + IPM To test yield potentiality of newly released groundnut variety 20 120 150 2 Groundnut IPM Varietal evaluation+ IPM through Chlorpyriphos Management of white grub through seed treatment 15 105 125 3 Chickpea ICM Varietal+ INM+IDM+IPM To test yield potentiality of newly released gram variety 18 185 325 4 Wheat ICM INM 7 30 45 5 Cumin ICM IPM Management of management 5 55 45 6 Cumin ICM Line sowing Management of pest & disease 8 80 120 8 Brinjal ICM Varietal evaluation To test yield potentiality of newly released variety 9 28 15 9 Brinjal ICM Varietal evaluation To test yield potentiality of newly released variety 7 25 12 10 Tomato ICM Varietal evaluation To test yield potentiality of newly released variety 12 30 20 11 <						villages	farmers	in ha
Image: section of the section of th		~ 1				• •	1.0.0	1.70
Image: Probability of the problem o	1	Groundnut	ICM		-	20	120	150
2GroundnutIPMVarietal evaluation+ IPM through chlorpyriphosManagement of white grub through sed treatment151051253ChickpeaICMVarietal+ INM+IDM+IPM NTo test yield potentiality of newly released gram variety181853254WheatICMINMTo test yield potentiality of newly released gram variety730455CuminICMINMManagement of pest & disease8801206CuminICMLine sowing evaluationManagement of pest & disease8801207Seasonal VegetablesNutritional securityKitchen garden evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety725129BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety12302010TomatoICMVarietal evaluationTo test yield potentiality of newly released variety1230-11BuffaloNutrient ManagementBypass Protein ManagementIncreased milk fat %1230-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderFodder <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
2GroundnutIPMVarietal evaluation+ IPM through ChlorpyriphosManagement of white grub through seed treatment151051253ChickpeaICMVarietal+ INM+IDM+IPM INM+IDM+IPMTo test yield potentiality of newly released gram variety181853254WheatICMINM730455CuminICMIPMManagement of pest management555456CuminICMLine sowingManagement of pest & disease8801207Seasonal VegetablesNutritional SecurityKitchen garden1545-8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011Buffalo ManagementNutrient ManagementBy Pass Fat ManagementIncreased milk production1840-13Cow ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderIncreased milk Mineral Mixture1535-				IPM	-			
aevaluation+ IPM through Chlorpyriphoswhite grub through seed treatmentlllll3ChickpeaICMVarietal+ INM+IDM+IPMTo test yield potentiality of newly released gram variety181853254WheatICMINMTo test yield potentiality of newly released gram variety730455CuminICMINMManagement of pest & disease555456CuminICMLine sowing varietyManagement of pest & disease88001207Seasonal VegetablesNutritional SecurityKitchen gardenTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011Buffalo ManagementBypass Protein (22%)Increased milk production1840-13CowNutrient ManagementBypass Fat Mineral MixtureIncreased milk fat % Increased milk1230-14FodderFodderFodderFodderIncreased milk Mineral Mixture1535-		<u> </u>		TT T T	•		105	107
Image: search of the second	2	Groundnut	IPM		_	15	105	125
Image: second								
3ChickpeaICMVarietal+ INM+IDM+IPMTo test yield potentiality of newly released gram variety181853254WheatICMINM730455CuminICMIPMManagement of pest management555456CuminICMLine sowingManagement of pest & disease8801207Seasonal VegetablesNutritional SecurityKitchen garden1545-8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderFodderIncreased milk Mineral Mixture1535-					seed treatment			
Image: Note of the second se	2	<u>C1 : 1</u>			T () 11	10	107	225
4WheatICMINM730454WheatICMINM730455CuminICMIPMManagement of pest management555456CuminICMLine sowingManagement of pest & disease8801207Seasonal VegetablesNutritional SecurityKitchen garden1545-8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk production1230-13Cow Mutrient ManagementChelated Mineral MixtureIncreased milk production1535-14FodderFodderFodderIncreased milk Increased milk1535-	3	Chickpea	ICM		•	18	185	325
4WheatICMINMvariety////4WheatICMINM730455CuminICMIPMManagement of pest management555456CuminICMLine sowingManagement of pest & disease8801207Seasonal VegetablesNutritional SecurityKitchen garden1545-8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat Mineral MixtureIncreased milk fat % production1230-13Cow ManagementChelated Mineral MixtureIncreased milk production1535-				INM+IDM+IPM				
4WheatICMINM730455CuminICMIPMManagement of pest management555456CuminICMLine sowingManagement of pest & disease8801207Seasonal VegetablesNutritional SecurityKitchen garden1545-8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk production1230-13Cow Mutrient ManagementChelated Mineral MixtureIncreased milk fat % Mineral Mixture1230-14FodderFodderFodderIncreased milk Mineral Mixture1535-					-			
5CuminICMIPMManagement of pest management555456CuminICMLine sowingManagement of pest & disease8801207Seasonal VegetablesNutritional SecurityKitchen garden1545-8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk fat %1230-13Cow Mutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderIncreased milk Increased milk1535-	4	XX 71 4	ICM		variety	7	20	45
Image of the second s								-
6CuminICMLine sowingManagement of pest & disease8801207Seasonal VegetablesNutritional SecurityKitchen garden1545-8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient Management (22%)Bypass Protein productionIncreased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk fat %1230-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1535-14FodderFodderFodderIncreased milk1535-	5	Cumin	ICM	IPM	• •	5	55	45
Image: Second vegetablesNutritional SecurityKitchen garden& diseaseImage: SecurityImage: Security <thimage: s<="" td=""><td></td><td><u> </u></td><td></td><td>T · · ·</td><td></td><td>0</td><td>00</td><td>100</td></thimage:>		<u> </u>		T · · ·		0	00	100
7Seasonal VegetablesNutritional SecurityKitchen garden Security1545-8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety725129BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk fat %1230-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderFodderIncreased milk1535-	6	Cumin	ICM	Line sowing	0 1	8	80	120
VegetablesSecurityOOOOOO8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety725129BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302010TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk fat %1230-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderFodderIncreased milk1535-	7	0 1	NI	Vitale en a sulla r	& disease	15	45	
8BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety928159BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety725129BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk fat %1230-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderIncreased milk1535-	/			Kitchen garden		15	45	-
ofofevaluationpotentiality of newly released varietyImage: Comparison of the compa	0	-		Variatal	To toot wield	0	20	15
Image: second	8	Brinjai	ICM			9	28	15
9BrinjalICMVarietal evaluationTo test yield potentiality of newly released variety7251210TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302010TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk production1840-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderFodderIncreased milk1535-				evaluation				
Joint Problemevaluationpotentiality of newly released varietyImage: Second	0	Drinial	ICM	Variatal	•	7	25	12
Image: Instant of the sector	9	DIIIJai	ICIVI		•	/	23	12
10TomatoICMVarietal evaluationTo test yield potentiality of newly released variety12302011BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat ManagementIncreased milk production1840-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderFodderIncreased milk1535-				evaluation				
Image: series of the series	10	Tomato	ICM	Variatal	<u>,</u>	12	30	20
Image: Image with the state with th	10	Tomato	ICIVI		•	12	50	20
11BuffaloNutrient ManagementBypass Protein (22%)Increased milk production1435-12BuffaloNutrient ManagementBy Pass Fat productionIncreased milk production1840-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderIncreased milk1535-				evaluation				
ManagementManagementManagementProductionIncreased milkManagementAdo-12BuffaloNutrientBy Pass FatIncreased milk1840-13CowNutrientChelatedIncreased milk fat %1230-14FodderFodderFodderIncreased milk1535-	11	Buffalo	Nutrient	Bynass Protein	· · · · · ·	14	35	_
12BuffaloNutrient ManagementBy Pass Fat ProductionIncreased milk production1840-13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderIncreased milk1535-	11	Bulluit		• 1		17	55	
ManagementproductionImagement13CowNutrientChelatedIncreased milk fat %1230-14FodderFodderFodderIncreased milk1535-	12	Buffalo	-	× ,	*	18	40	_
13CowNutrient ManagementChelated Mineral MixtureIncreased milk fat %1230-14FodderFodderFodderIncreased milk1535-	14			<i>L</i> y 1 uso 1 ut		10		
ManagementMineral MixtureImage: Constraint of the second se	13	Cow	-	Chelated	1	12	30	_
14FodderFodderIncreased milk1535-	13				moreused mink fut /0	14	50	
	14	Fodder			Increased milk	15	35	_
	17		Management	management	production	15	55	

B. Details of FLDs implemented during 2022 (Kharif 2022, Rabi 2021-22, Summer 2022)

Sr.	Crop	Thematic area	Technology	Season and year	Area (ha)		No. of farmers/ Demonstration			Reasons for short-
No.	Стор		Demonstrated		Proposed	Actual	SC/ ST	Others	Total	fall in achievem
1	Groundnut	NRM	Varietal + INM	Kharif	4.0	4.0	1	9	10	-
			+ IDM $+$ IPM	2022						
2	Groundnut	ICM	IPM	Kharif	4.0	4.0	1	9	10	-
			Chlorpyriphos	2022						

Oilseeds (*Kharif*-2022):

Pulses (*Rabi* 2021-22):

Sr.	Сгор	Thematic	ematic Technology Season and		Area (ha)		No. of farmers/ Demonstration			Reasons for short-
No.	Crop	area	Demonstrated		Proposed	Actual	SC/ ST	Others		fall
1	Chickpea	ICM	Varietal+ INM+IDM+IP	<i>Rabi</i> 2021-22	4.0	4.0	2	8	10	-

Cereals (*Rabi* 2021-22):

Sr	('ron	Thematic	Technology	Season and	Area	(ha)		. of farn monstra	tion	Reasons for short-
No	No. Crop	area	Demonstrated		Proposed	Actual	SC/ ST	Others		
1	Wheat	ICM	INM	<i>Rabi</i> 2021-22	2.0	2.0	1	4	5	-

Vegetable

Sr.	Сгор	Thematic	Technology	Season and	Area	(ha)	De	. of farn monstra	ation	Reasons for short-
No.	Стор	area	Demonstrated	year	Proposed	Actual	SC/ ST	Others		fall
1	Brinjal	ICM	Varietal	Rabi	8.0	8.0	3	17	20	-
			evaluation	2021-22						
2	Brinjal	ICM	Varietal	Rabi	4.0	4.0	1	9	10	
			evaluation	2021-22						
3	Tomato	ICM	Varietal	Rabi	8.0	8.0	4	16	20	
			evaluation	2021-22						

Others (Spices & livestock):

Sr.	Crop	Thematic	Technology	Season and	Area ((ha)). of farn monstra	ation	Reasons for short-
No.	Стор	area	Demonstrated		Proposed	Actual	SC/ ST	Others		fall
1	Cumin	ICM	IPM	<i>Rabi</i> 2021-22	4.0	4.0	1	9	10	-
2	Cumin	ICM	Line sowing	<i>Rabi</i> 2021-22	2.0	2.0	0	5	5	-
3	Buffalo	Nutrient management	Bypass Protein (22%)	2022	-	-	3	17	20	-
4	Buffalo	Nutrient management		2022	-	-	2	18	20	-
5	Cow	Nutrient management	Chelated Mineral Mixture	2022	-	_	2	18	20	-
6	Fodder	Fodder management	Fodder management		-	-	1	9	10	-

Details of farming situation

Сгор	Season	arming situation (RF/Irrigated)	Soil type	Stat	us of	soil	Previous crop	Sowing date	Harvest date	Seasonal rainfall (mm)	No. of rainy days
		Farming (RF/Irr		Ν	Р	K					
Groundnut	Kharif	RF	M. B.	L	Μ	Н	Wheat/	11/6/	16/10/	725.3	-
	-						Cumin	2022	2022	mm	
Groundnut	Kharif	RF	M. B.	L	Μ	Η	Wheat/	4/6/	2/10/	725.3	-
							Cumin	2022	2022	mm	
Chickpea	Rabi	Irrigated	M. B.	L	Μ	Η	G'nut /	16/11/	21/2/	-	-
							Cotton	2021	2022		
Wheat	Rabi	Irrigated	M. B.	L	Μ	Η	G'nut /	24/11/	20/2/	-	-
							Cotton	2021	2022		
Cumin	Rabi	Irrigated	M. B.	L	Μ	Н	G'nut /	24/11/	20/2/	_	-
							Cotton	2021	2022		

Technical Feedback on the demonstrated technologies

S.	Feed Back
No.	
1	Recently developed certified varieties of different crops give higher yield.
2	Use of fertilizers, irrigation, insecticides and fungicide as per recommendation reduce the
	production cost.
3	Low disease infestation and increase in the yield in line sowing method of cumin with use of
	drip irrigation
4	Stem rot infestation can be reduced with use of <i>Trichoderma</i> in mixture with castor cake
5	Yield of cotton can be increased through De-topping of monopodial branches at 75 and 90
	DAS

Farmers' reactions on specific technologies

SN	Feed Back
1.	Groundnut variety GJG-32 gave higher yield and low disease infestation as compared to
	other variety but it required more number of days for maturity
2.	Yield of cotton can be increased through De-topping but De-topping practice is much
	laborious work and taking time for operation.
3.	Application of <i>Trichoderma</i> reduce wilt disease in cumin
4.	Application of <i>Trichoderma</i> reduce stem rot infestation in groundnut
5.	Low infestation of pest & disease in line sowing of cumin
6.	Research needed for control of insect-pests and diseases in organic farming
7.	Improve nutritional status of cattle and increase productivity of milch animal through
	feeding bypass fat and bypass protein
8.	Fresh vegetable available at doorstep and at a time with minimum cost in kitchen gardening

Extension and Training activities under FLD

SI. No	Activity	No. of activities organised	Date	Number of participants	Remarks
1	Field days	2	Aug. & Feb.	57	-
2	Farmers Training	5	2022	123	-
3	Media coverage	-	-	-	-
4	Training for extension	2	May and June	58	-
	functionaries				

C. Performance of Frontline demonstrations

Frontline demonstrations on oilseed crops

Green	Thematic	Technology	Vorieta	No. of	Area		Yiel	d (q/ha)		% In 2002 200		omics of a (Rs./	lemonstr /ha)	ation	E	conomics (Rs.	s of chec /ha)	k
Сгор	Area	demonstrated	variety	No. of Farmers	(ha)		DemoCHighLowAverage		Check	Increase in yield	Gross	Gross	Net		Gross			BCR
						High			CIICK	in yield	Cost	Return	Return	(R / C)	Cost	Return	Return	(R / C)
Groundnut	NRM	Varietal +	GJG-															
		INM+IDM + IPM	32	10	4.0	25.00	15.00	20.00	18.00	11.11	35000	99000	64000	2.82	33500	88500	55000	2.64
Groundnut	ICM	IPM Chlorpyriphos	GJG- 32	10	4.0	20.00	13.00	16.50	15.00	10.00	39500	99850	60350	2.53	37700	88240	50540	2.34

Frontline demonstration on pulse crops :

Cuon	Thematic	technology	Variaty	No. of	Area		Eq Yi	eld (q/ha)		%		omics of o (Rs.		ration	E	conomics (Rs.		k
Crop	Area	demonstrated	variety	Farmers	(ha)		Dem	0	Check	in yield	Gross	Gross	Net	BCR	Gross	Gross		BCR
						High	Low	Average	0	J	Cost	Return	Return	(R / C)	Cost	Return	Return	(R / C)
Chickpea		Varietal+ INM+IDM+IPM	GJG-6	10	4.0	26.00	19.00	22.00	19.00	15.78	27200	111300	84100	4.09	25500	97400	71900	3.81

Frontline demonstration on cereal crops:

	Thematic	technology	T 7 • 4	No. of	Area		Eq Yi	eld (q/ha)		%	Econo	omics of a (Rs.)		ration	E	conomics (Rs.)	s of chec /ha)	ĸ
Crop	Area	demonstrated	Variety	Farmers	(ha)		Demo			Increase in yield	Gross	Gross	Net	BCR	Gross	Gross	Net	BCR
						High	Low	Average	Check	in yielu	Cost	Return	Return	(R / C)	Cost	Return	Return	(R / C)
Wheat	ICM	INM	GW-451	5	2.0	50.00 43.00 46.00			42.00	9.5	32000	102200	70200	3.24	30500	96500	66000	3.16

FLD on Other crops

Category		Name of the				Yield	l (q/ha)		% Change in Yield	Para	her neters percent	Есо	nomics of ((Rs.	demonstra /ha)	tion	Ecor	nomics of c	check (Rs./	ha)
& Crop	Area	technology	rarmers	(na)		Demo		Check	in riela	Demo	Check	Gross	Gross	Net	BCR	Gross	Gross	Net	BCR
					High	Low	Average			Demo	Check	Cost	Return	Return	(R /C)	Cost	Return	Return	(R /C)
Cumin	IPM	GC-4	10	4	12.00	9.50	10.75	8.20	31.09			42110	157000	114890	3.72	38500	115200	76700	2.99
Cumin	IDM	GC-4	5	2	11.90	11.90 8.80 10.00		8.20	29.95			34100	163300	129200	4.78	33000	135000	102000	4.09

FLD on Vegetable crops

Category		Name of the				Yield	l (q/ha)		% Change	Parai disease	her neters percent		nomics of ((Rs.	lemonstra /ha)	tion	Eco	nomics of c	check (Rs./	ha)
& Crop	Area	technology	Farmers	(na)		Demo		Check	in Yield	Demo	Check	Gross	Gross	Net	BCR	Gross	Gross	Net	BCR
					High	Low	Average					Cost	Return	Return	(R / C)	Cost	Return	Return	(R /C)
Brinjal (GJLB-4)	ICM	Varietal evaluation	20	8.0	251.0	135.3	155.25	120.10	29.26			55325	145500	90175	2.62	54100	111300	57200	2.0
Brinjal (GJB-3)	ICM	Varietal evaluation	10	4.0	267.0	130.3	160.0	123.0	30.08			54500	151000	96500	2.77	53000	109000	56000	2.05
Tomato (GT-6)		Varietal evaluation	20	8.0	250.0	150.5	170.0	130.0	30.70			55500	155300	99800	2.79	54500	125000	70500	2.29

Frontline Demonstration on Nutri cereals : Nil

	Thematic	tic Technology		No. of	Area	Yie	ld (q/ha)		% Increase	Ecor		demonstra ./ha)	tion	ŀ		s of checl ./ha)	ĸ
Crop	Area	demonstrated	Variety	Farmers	(ha)	Demo High Low Average		Check		Gross Cost	Gross Return	Net	BCR (R/C)	Gross Cost	Gross Return	Net	BCR (R/C)
)										

FLD on Farm Implements and Machinery

Name of the		Technology	No. of	Major	Fodder waste (k	g/animal/day)	% change in major	Cost reduction
implement	Сгор	demonstrated	farmers	parameters	Demo	Checkparameter (waste reduction)Rs./a	Rs./animal/day	
Chaff cutter (Capacity 0.5 ton/h	Fodder crop (Maize and Sorghum)	Chaff cutter	1	Fodder waste reduction	0.60	3.70	83.78	25.00

FLD on Livestock

Category	Thematic area	Name of the technology	No. of Farme				% change			de	Econor monstra	mics of ation (R	s.)	Ec	onomics (R		ck
		demonstrated	r	(Animal/ Poultry/ Birds, etc)	Demo	Check	in major parameter		Check		Gross Return				Gross Return		BCR (R/C)
	Nutrient Management	Bypass Protein (22%)	20	20 animals	1694 kg/lactation	1472 kg/lactation	15.08			37200	84700	47500	2.28	36000	73600	37600	2.04
	Nutrient Management	By Pass Fat	20	20 animals	8.0% Fat	6.7% Fat	19.40			34000	91320	47320	2.68	30000	71400	41400	2.38
		Chelated Mineral mixture	20	20 animals	1629 kg/lactation	1476kg/lactation	10.36			29000	66160	37160	2.28	27500	59040	31540	2.14
	Fodder Management		10	1	84	72	16.66			81000	136000	55000	1.67	73000	108000	35000	1.48

FLD on Other Enterprise: Kitchen Gardening

Category and	Thematic	Name of the	No. of	No. of	Yield	(Kg)	%	Other p	parameters	Econom	ics of dem	onstration	(Rs./ha)	Econ	omics of c	heck (Rs./	ha)
Crop	area	technology	Farmer	Units	Demons	Check	change	Demo	Check	Gross	Gross	Net	BCR	Gross	Gross	Net	BCR
		demonstrated			ration		in yield			Cost	Return	Return	(R /C)	Cost	Return	Return	(R / C)
Different	Nutritive	Kitchen	5	5	-	-	-	-	-	-	-	-	-	-	-	-	-
vegetables	& fresh	garden															
	healthy																
	vegetables																

Farm women reaction

-Kitchen gardening gives continues supply of fresh vegetables at lower cost which gives daily nutritious diet

-In kitchen gardening farm women are not applying any agrochemicals so they produce organic vegetables

-Before demonstration, farm women were growing only three to four vegetable crops in their backyard but after demonstration they said that they will grow different vegetable crops through kitchen gardening in scientific way

-They gave extra vegetables to their neighbors

-Farm women said that now we will generate income by selling of extra vegetables because now they are aware about precious organic vegetables

- Due to kitchen gardening children learned to about plant cognization and bio diversity.

3.4. Training Programmes

Farmers'	Training including	g sponsored training	programmes (on campus)
				o i i i i i i i i i i

Thematic area	No. of					Particip	ants			
Thematic ur cu	courses		Others			SC/ST		G	Frand Tot	al
					Male	Female		Male	Female	
I Crop Production			1 0111010	1000	1,1410	1 cilluic	1000	liluit		10001
Weed Management	1	25	0	25	0	0	0	25	0	25
Resource Conservation			_				-			-
Technologies										
Cropping Systems										
Crop Diversification										
Integrated Farming	1	21	0	21	0	0	0	21	0	21
Micro Irrigation/irrigation		21	0	21	0	0	0	21	0	21
Seed production										
Nursery management										
Integrated Crop Management										
Soil & water conservation	1	25	1	26	2	0	2	27	1	28
Integrated nutrient	1	25	1	20	2		4	21	1	20
management										
Production of organic inputs										
Others (pl. specify)										
Organic/Natural Farming	2	43	0	43	0	0	0	43	0	43
Total	5	⁴⁵	1	43 115	2	0	2	43 116	1	43 117
II Horticulture	5	114	1	115	4	U	4	110	1	11/
a) Vegetable Crops										
Production of low value and										
high value crops										
Off-season vegetables	1	20	0	20	0	0	0	20	0	20
Nursery raising	1	30	0	30	0	0	0	30	0	30
Exotic vegetables										
Export potential vegetables										
Grading and standardization								-		
Protective cultivation										
Others (pl specify)										
Total (a)	1	30	0	30	0	0	0	30	0	30
b) Fruits										
Training and Pruning										
Layout and Management of										
Orchards										
Cultivation of Fruit										
Management of young	1							1	1	-
plants/orchards										
Rejuvenation of old orchards								1	1	
Export potential fruits	1							1	1	-
Micro irrigation systems of									1	
orchards										
Plant propagation techniques	1	32	0	32	3	0	3	35	0	35
Others (pl specify)	-	52	0	52	5		5	55		55
			-		-		_			
Total (b)	1	32	0	32	3	0	3	35	0	35

c) Ornamental Plants										
Nursery Management										
Management of potted plants										
Export potential of										
ornamental plants										
Propagation techniques of										
Ornamental Plants										
Others (pl specify) Total (c)										
d) Plantation crops										
Production and Management										
technology										
Processing and value addition										
Others (pl specify)										
Total (d)										
e) Tuber crops										
Production and Management										
technology										
Processing and value addition										
Others (pl specify)										
Total (e)										
f) Spices										
Production and Management										
technology										
Processing and value addition										
Others (pl specify)										
Total (f)										
g) Medicinal and Aromatic										
Plants										
Nursery management										
Production and management										
technology										
Post harvest technology and										
value addition										
Others (pl specify)										
Total (g)	2	()	0		3	0	3	(5	0	(5
Grand Total (a to g)	2	62	U	62	3	0	3	65	0	65
III Soil Health and Fertility										
Management										
Soil fertility management										
Integrated water management										
Integrated Nutrient		0-	2		6	C C		07	2	
Management	1	27	3	30	0	0	0	27	3	30
Production and use of organic										
inputs										
Management of Problematic										
soils										
Micro nutrient deficiency in										
crops										
Nutrient Use Efficiency										
Balance use of fertilizers		<u> </u>								
Soil and Water Testing										
Others (pl specify)										
Total	1	27	3	30	0	0	0	27	3	30

IV Livestock Production										
and Management										
Dairy Management	1	31	0	31	0	0	0	31	0	31
Poultry Management	1	51	0	51	0	0	0	51	0	51
Piggery Management										
Rabbit Management										
Animal Nutrition										
	1	0	16	16	0	5	5	0	21	21
Management Disease Management	1	19	0	10	2	0	2	21	$\frac{21}{0}$	21
	1	19	0	19	7	0	7	21	0	21
Feed & fodder technology	1	10	0	10	/	0	/	23	0	23
Production of quality animal	1	21	0	21	0	0	0	21	0	21
products	1	21	0	21	0	0	0	21	0	21
Others (pl specify)	1	17	0	17	2	0	2	19	0	19
Total	6	106	16	122	11	5	16	117	21	138
V Home Science/Women										
empowerment										
Household food security by										
kitchen gardening and			• •		<u>^</u>					
nutrition gardening	1	2	29	31	0	3	3	2	32	34
Design and development of	_	_			~		_	_	<u> </u>	
low/minimum cost diet	1	0	24	24	0	1	1	0	25	25
Designing and development for					_	_				
high nutrient efficiency diet	1	13	31	44	0	7	7	13	38	51
Minimization of nutrient loss										
in processing										
Processing and cooking	1	0	9	9	0	0	0	0	9	9
Gender mainstreaming										
through SHGs										
Storage loss minimization										
techniques										
Value addition	1	0	10	10	0	0	0	0	10	10
Women empowerment										
Location specific drudgery										
reduction technologies										
Rural Crafts										
Women and child care										
Others (pl specify)										
Total	5	15	103	118	0	11	11	15	114	129
VI Agril. Engineering										
Farm Machinery and its										
maintenance	1	28	0	28	0	0	0	28	0	28
Installation and maintenance	-					Ŭ			Ū	
of micro irrigation systems	1	22	0	22	1	0	1	23	0	23
Use of Plastics in farming	-		•		-		-	23	0	20
practices	1	25	0	25	0	0	0	25	0	25
Production of small tools and	1	20	V	20	Ū	0	0	20	0	20
implements										
Repair and maintenance of										
farm machinery and										
implements	1	24	4	28	2	0	2	26	4	30
Small scale processing and	T	<u>~</u> T		20				20	•	50
value addition	1	27	0	27	0	0	0	27	0	27
Post Harvest Technology	1	21		21	0	0		21	0	21
Others (pl specify)rain water										
Harvesting	1	23	1	24	3	0	3	24	3	27
Total	<u> </u>	149	5	154	<u> </u>	0	<u> </u>	153	<u> </u>	160
10141	U	147	5	134	U	V	U	133	1	100

VII Plant Protection										
Integrated Pest Management	1	18	0	18	0	0	0	18	0	18
Integrated Disease										
Management	1	20	0	20	0	0	0	20	0	20
Bio-control of pests and										
diseases										
Production of bio control										
agents and bio pesticides										
Others (pl specify)										
Total	2	38	0	38	0	0	0	38	0	38
GRAND TOTAL	27	511	128	639	22	16	38	531	146	677

Farmers' Training including sponsored training programmes (off campus)

Thematic area	No. of				P	articipa	nts			
	courses		Others			SC/ST			rand To	
		Male	Female	Total	Male	Female	Total	Male	Female	Total
I Crop Production										
Weed Management										
Resource Conservation										
Technologies										
Cropping Systems	1	29	0	29	0	0	0	29	0	29
Crop Diversification										
Integrated Farming	1	19	0	19	2	0	2	21	0	21
Micro Irrigation/irrigation										
Seed production										
Nursery management										
Integrated Crop Management										
Soil & water conservation										
Integrated nutrient management										
Production of organic inputs										
Others (pl specify)										
Total	2	48	0	48	2	0	2	50	0	50
II Horticulture										
a) Vegetable Crops										
Production of low value and										
high value crops										
Off-season vegetables										
Nursery raising										
Exotic vegetables										
Export potential vegetables										
Grading and standardization										
Protective cultivation	1	28	0	28	0	0	0	28	0	28
Others (pl specify)										
Total (a)	1	28	0	28	0	0	0	28	0	28

b) Fruits	1			<u> </u>						
Training and Pruning	+			+						
Layout and Management of										
Orchards										
Cultivation of Fruit										
Management of young										
plants/orchards										
Rejuvenation of old orchards										
Export potential fruits	+			+						
Micro irrigation systems of	+			+						
orchards										
Plant propagation techniques										
Others (pl specify)										
Total (b)	-		<u> </u>							
c) Ornamental Plants	-		<u> </u>							
Nursery Management	+	┨───┤		+						
Management of potted plants	-		<u> </u>							
Export potential of ornamental	╂────	┨────┦		+						
plants										
Propagation techniques of				-						
Ornamental Plants										
Others (pl specify)				-						
Total (c)				-						
				+						
d) Plantation crops Production and Management				+						
technology										
Processing and value addition				-						
Others (pl specify)				+						
Total (d)				-						
e) Tuber crops				-						
Production and Management				-						
technology										
Processing and value addition				-						
Others (pl specify)				-						
Total (e)				+						
f) Spices				+						
Production and Management	 			+						
technology										
Processing and value addition				-						
				+						
Others (pl specify) Total (f)	┼───	┨────┦		+						
g) Medicinal and Aromatic	 			+						
Plants										
Nursery management										
Production and management										
technology										
Post harvest technology and										
value addition										
Others (pl specify)										
Total (g)										
Grand Total (a to g)	1	28	0	28	0	0	0	28	0	28

III Soil Health and Fertility										
Management										
Soil fertility management										
Integrated water management										
Integrated Nutrient										
Management										
Production and use of organic										
inputs	1	15	0	15	0	0	0	15	0	15
Management of Problematic										
soils										
Micro nutrient deficiency in										
crops										
Nutrient Use Efficiency										
Balance use of fertilizers										
Soil and Water Testing										
Others (pl specify)										
Total	1	15	0	15	0	0	0	15	0	15
IV Livestock Production and		10	Ū		v	•	•	10	•	10
Management										
Dairy Management	3	79	31	110	0	0	0	79	31	110
Poultry Management	5	17	51	110	0	0	Ŭ	17	51	110
Piggery Management		┼ ┤								
Rabbit Management										
Animal Nutrition Management										
Disease Management										
Feed & fodder technology	1	20	0	20	0	0	0	20	0	20
	1	20	0	20	0	0	0	20	0	20
Production of quality animal products										
	1	20	0	20	0	0	0	20	0	20
Others (pl specify) Total	5	119	<u> </u>	150	0	0	0	<u> </u>	<u> </u>	150
V Home Science/Women	5	119	51	150	U	U	U	119	51	150
empowerment										
Household food security by										
kitchen gardening and nutrition										
gardening	1	0	16	16	0	0	0	0	16	16
Design and development of	1	0	10	10	0	0	0	0	10	10
low/minimum cost diet	1	0	21	21	0	4	4	0	25	25
Designing and development for	1	0	21	21	0	4	4	0	23	23
high nutrient efficiency diet										
Minimization of nutrient loss in										
processing										
Processing and cooking										
Gender mainstreaming through		+		+						
SHGs										
Storage loss minimization		+		+						
techniques										
Value addition	1	+								
Women empowerment	1	0	13	13	0	0	0	0	13	13
Location specific drudgery	1		15	13	U	0	0		15	15
reduction technologies	1	0	27	27	0	2	2	0	29	29
Rural Crafts	1		21	<i>∠1</i>	U	4	<u> </u>		<i></i> }	21
Women and child care	1	0	16	16	0	0	0	0	16	16
Others (pl specify)	1	0	10	10	U	U	U	U	10	10
Total	5	0	93	93	0	6	6	0	99	99
IUIAI	Э	V	35	73	U	U	U	U	77	77

VI Agril. Engineering										
Farm Machinery and its										
maintenance										
Installation and maintenance of										
micro irrigation systems	1	23	0	23	4	0	4	27	0	27
Use of Plastics in farming										
practices	2	36	1	37	3	0	3	39	1	40
Production of small tools and										
implements										
Repair and maintenance of farm										
machinery and implements	1	23	0	23	0	0	0	23	0	23
Small scale processing and										
value addition										
Post Harvest Technology	1	16	0	16	0	0	0	16	0	16
Others (pl specify)										
Total	5	98	1	99	7	0	7	105	1	106
VII Plant Protection										
Integrated Pest Management	1	22	0	22	0	0	0	22	0	22
Integrated Disease Management										
Bio-control of pests and										
diseases										
Production of bio control										
agents and bio pesticides										
Others (pl specify)										
Total	1	22	0	22	0	0	0	22	0	22
GRAND TOTAL	20	330	125	455	9	6	15	339	131	470

Farmers' Training including sponsored training programmes – CONSOLIDATED

(On + Off campus)

Thematic area	No. of	Participants								
	courses	Others			SC/ST			Grand Total		
		Male	Female	Total	Male	Female	Total	Male	Female	Total
I Crop Production										
Weed Management	1	25	0	25	0	0	0	25	0	25
Resource Conservation										
Technologies										
Cropping Systems	1	29	0	29	0	0	0	29	0	29
Crop Diversification										
Integrated Farming	2	40	0	40	2	0	2	42	0	42
Micro Irrigation/irrigation										
Seed production										
Nursery management										
Integrated Crop										
Management										
Soil & water conservation	1	25	1	26	2	0	2	27	1	28
Integrated nutrient										
management										
Production of organic inputs										
Others (pl specify)	2	43	0	43	0	0	0	43	0	43
Total	7	162	1	163	4	0	4	166	1	167

1	20	0	20	0	0	0	20	0	20
I	30	0	30	0	0	0	30	0	30
1	28	0	28	0	0	0	28	0	28
2	58	0	58	0	0	0	58	0	58
1	32	0	32	3	0	3	35	0	35
1	52	0	52	5	0	5	55	0	55
1	32	0	32	3	0	3	35	0	35
-		U	02	0	v	0		v	00
	1 1 2 1 1 1 1 1 1 1 1	1 28 2 58 	1 28 0 2 58 0 	1 28 0 28 2 58 0 58 1 28 0 58 1 32 0 32	1 28 0 28 0 2 58 0 58 0 1 28 0 58 0 1 32 0 32 3	1 28 0 28 0 0 2 58 0 58 0 0 1 28 0 58 0 0 1 32 0 32 3 0	1 28 0 28 0 0 0 2 58 0 58 0 0 0 1 28 0 58 0 0 0 2 58 0 58 0 0 0 1 1 1 1 1 1 1 1 32 0 32 3 0 3	1 28 0 28 0 0 0 28 2 58 0 58 0 0 0 58 1 28 1 <t< td=""><td>1 28 0 28 0 0 0 28 0 2 58 0 58 0 0 0 58 0 1 28 0 58 0 0 0 58 0 2 58 0 58 0 0 0 58 0 1 1 1 1 1 1 1 1 1 1 32 0 32 3 0 3 35 0</td></t<>	1 28 0 28 0 0 0 28 0 2 58 0 58 0 0 0 58 0 1 28 0 58 0 0 0 58 0 2 58 0 58 0 0 0 58 0 1 1 1 1 1 1 1 1 1 1 32 0 32 3 0 3 35 0

f) Spices										
Production and										
Management technology										
Processing and value										
addition										
Others (pl specify)										
Total (f)										
g) Medicinal and										
Aromatic Plants										
Nursery management										
Production and										
management technology										
Post harvest technology and										
value addition										
Others (pl specify)										
Total (g)										
Grand Total (a to g)	3	90	0	90	3	0	3	93	0	93
III Soil Health and	U	70	v	70		Ŭ		70	v	70
Fertility Management										
Soil fertility management										
Integrated water										
management										
Integrated Nutrient										
Management	1	27	3	30	0	0	0	27	3	30
Production and use of	1	27	5	50	0	Ŭ	Ŭ	27	5	50
organic inputs	1	15	0	15	0	0	0	15	0	15
Management of Problematic	1	15	0	15	0	0	0	10	0	10
soils										
Micro nutrient deficiency in										
crops										
Nutrient Use Efficiency										
Balance use of fertilizers										
Soil and Water Testing										
Others (pl specify)										
Total	2	42	3	45	0	0	0	42	3	45
IV Livestock Production		72	5		v	U	U		5	
and Management										
Dairy Management	4	110	31	141	0	0	0	141	0	141
Poultry Management	-	110	51	1.41	0		0	171		171
Piggery Management										
Rabbit Management										
Animal Nutrition				+				}		-
	1	0	16	16	0	5	5	0	21	21
Management	1	19	0	10	2	0	$\frac{3}{2}$	21	0	21
Disease Management	$\frac{1}{2}$	38	0		2 7	0	2 7		0	
Feed & fodder technology	L	38	U	38	/	0	/	45	0	45
Production of quality	1	21	0	21	0	0	0	21	0	21
animal products	$\frac{1}{2}$	21	0	21	0	0	0	21	0	21
Others (pl specify)	2	37	0	37	2	0	2	39	0	39
Total	11	225	47	272	11	5	16	267	21	288

V Home Science/Women										
empowerment										
Household food security by										
kitchen gardening and										
nutrition gardening	2	2	45	47	0	3	3	2	48	50
Design and development of	2	2	<u>-</u> тЈ	77	0	5	5	2	-10	50
low/minimum cost diet	2	0	45	45	0	5	5	0	50	50
Designing and development	2	U			0	5	5	0	50	50
for high nutrient efficiency										
diet	1	13	31	44	0	7	7	13	38	51
Minimization of nutrient	1	15	51		0	7	,	15	50	51
loss in processing										
Processing and cooking	1	0	9	9	0	0	0	0	9	9
Gender mainstreaming	1	U		,	0	0	U	0		,
through SHGs										
Storage loss minimization										
techniques										
Value addition	1	0	10	10	0	0	0	0	10	10
Women empowerment	1	0	13	13	0	0	0	0	13	10
Location specific drudgery	1		15	15	0				15	15
reduction technologies	1	0	27	27	0	2	2	0	29	29
Rural Crafts	1	0	21	27	0	2	2	0		27
Women and child care	1	0	16	16	0	0	0	0	16	16
Others (pl specify)	1	0	10	10	0	0	0	0	10	10
Total	10	15	196	211	0	17	17	15	213	228
VI Agril. Engineering	10	15	190	411	U	1/	1/	15	213	220
Farm Machinery and its										
maintenance	1	28	0	28	0	0	0	28	0	28
Installation and	1	20	0	20	0	0	0	20	0	20
maintenance of micro										
irrigation systems	2	45	0	45	5	0	5	50	0	50
Use of Plastics in farming	2	<u>-</u> тЈ	0			0		50	0	50
practices	3	61	1	62	3	0	3	64	1	65
Production of small tools	5	01	1	02	5	0	5	04	1	05
and implements										
Repair and maintenance of										
farm machinery and										
implements	2	47	4	51	2	0	2	49	4	53
Small scale processing and	-	17	т	51		0			т	55
value addition	1	27	0	27	0	0	0	27	0	27
Post-Harvest Technology	1	16	0	16	0	0	0	16	0	16
Others (pl specify)	1	23	1	24	3	0	3	24	3	27
Total	11	247	6	253	13	0	13	258	8	266
VII Plant Protection		<i></i>	v		10		10		U	
Integrated Pest Management	2	40	0	40	0	0	0	40	0	40
Integrated Disease		10	0	10				10	0	10
Management	1	20	0	20	0	0	0	20	0	20
Bio-control of pests and	-	20		20				20		20
diseases										
Production of bio control										
agents and bio pesticides										
Others (pl specify)										
Total	3	60	0	60	0	0	0	60	0	60
GRAND TOTAL	47	841	253	1094	31	22	53	901	246	1147
GRAND IOTAL		071	233	10/4	51		55	701	240	114/

Training for Rural Youths/School drops including sponsored training programmes (On campus)

	No. of				No. of	Participa	ants			
Area of training	~	General			SC/ST			Grand Total		
	Courses	Male	Female	Total	Male	Female	Total	Male	Female	Total
Integrated farming	1	0	65	65	0	10	10	0	75	75
TOTAL	1	0	65	65	0	10	10	0	75	75

Training programmes for Extension Personnel including sponsored training (on campus)

	No. of				No. o	f Partici	pants			
Area of training	Courses	Gen	eral/ Otl	ners		SC/ST		G	rand To	tal
	Courses	Male	Female	Total	Male	Female	Total	Male	Female	Total
Natural Farming	2	51	0	51	7	0	7	58	0	58
TOTAL	2	51	0	51	7	0	7	58	0	58

Sponsored training programmes

	No. of				No. o	f Partici	pants			
Area of training	Courses	Ger	neral/Ot	hers		SC/ST		G	rand To	tal
		Male	Female	Total	Male	Female	Total	Male	Female	Total
Crop production and										
management										
Increasing production and										
productivity of crops										
Commercial production of										
vegetables										
Production and value addition										
Fruit Plants										
Ornamental plants										
Spices crops										
Soil health and fertility										
management										
Production of Inputs at site										
Methods of protective cultivation										
Others (pl. specify)										
Total										
Post harvest technology and										
value addition										
Processing and value addition										
Others (pl. specify)	1	37	5	42	4	0	4	41	5	46
Total	1	37	5	42	4	0	4	41	5	46
Farm machinery										
Farm machinery, tools and										
implements										
Others (pl. specify)										
Total										
Livestock and fisheries										<u> </u>
Livestock production and										
management										<u> </u>
Animal Nutrition Management										<u> </u>
Animal Disease Management										

Fisheries Nutrition										
Fisheries Management										
Others (pl. specify)										
Total										
Home Science										
Household nutritional security	1	0	30	30	0	0	0	0	30	30
Economic empowerment of women										
Drudgery reduction of women										
Others (pl. specify)										
Total	1	0	30	30	0	0	0	0	30	30
Agricultural Extension										
CapacityBuilding and Group										
Dynamics										
Others (pl. specify)										
Total										
GRAND TOTAL	2	37	35	72	4	0	4	41	35	76

Details of vocational training programmes carried out by KVKs for rural youth

	No. of	No. of Participants										
Area of training	Courses	Ger	General/Others		SC/ST			Grand Total				
		Male	Female	Total	Male	Female	Total	Male	Female	Total		
Livestock Production and												
Management												
Scientific Dairy Farming	1	25	25	50	0	0	0	25	25	50		
Total	1	25	25	50	0	0	0	25	25	50		

3.5. Extension Programmes

Sr. No.	Activities and Sub-activities	Area (ha)/ No.	Beneficiaries (No.)
1	Field Day	2	57
2	Kishan Gosthi	3	32
3	Kisan Mela	3	345
4	Exhibition	1	385
5	TV Programme	1	-
6	Radio Talk	1	-
7	Press Release	8	-
8	Lecture Delivered	29	1362
9	Telephonic Help Line	998	998
10	Khedut Shibir	1	1009
11	Scientist Visit to Farmers field	8	41
12	Farmers Visit to KVK Farm	18	740
13	Extn. Literature distributed	5	950
14	TV/Film Show	6	596
15	Exposure visit	2	112
16	Animal Treatment Camp	3	179
17	Soil and Water testing	1	400
18	PM Kisan Samman Sammelan	3	514
19	Celebration of international pulse day	1	65

20	Celebration of international women day	1	190
21	Celebration of International Yoga Day and Awareness on	1	49
	Balanced use of Fertilizer and Awareness on Region Specific		
	Agroforestry		
22	Celebration of ICAR foundation day	1	110
23	Celebration of Parthenium week	1	50
24	Celebration of Mahila kisan diwas	1	30
25	Celebration of poshan abhiyan and tree plantation	1	51
26	Celebration of Technology week	1	385
27	Celebration of swachta pakhwadia	1	579
28	Celebration of World soil health day	1	47
29	Celebration of Kishan Diwas	1	86
30	Input dealer training	6	356
31	Celebration of Jal Shakti Abhiyan	1	171

Details of other extension programmes

Particulars	Number
Electronic Media (CD./DVD)	-
Extension Literature	-
Newspaper coverage	8
Popular articles	-
Radio Talks	1
TV Talks	1
Animal health camps (Number of animals treated)	3 (179)
Others (pl. specify)	-
Total	13

3.6. PRODUCTION OF SEED/PLANTING MATERIAL AND BIO-PRODUCTS

Production of seeds by the KVKs

Сгор	Name of the crop	Name of the variety	Name of the hybrid	Quantity of seed (q)	Value (Rs)	Number of farmers
Oilseeds	Groundnut (Breeder)	GJG-31		12.00	-	-
			-	Expected		
	Groundnut (Breeder)	GJG-32		31.50	-	-
			-	Expected		
	Groundnut (TF)	GJG-32		24.00	-	-
			-	Expected		
Pulses	Chickpea (Breeder)	GG-5	-	23.65	-	-
	Chickpea (Foundation)	GG-5	-	50.10		

4. LITERATURE DEVELOPED/PUBLISHED (with full title, author & reference)

A. KVK News Letter ((Date of start, Periodicity, number of copies distributed etc.): Nil

B. Literature developed/published

Item	Title	Authors name	Name & Number
Research	Altered expression levels of	Feba Jacob,	Plant Stress, 3:1-8
papers/	transcripts of GNAC TFs during	Mahesh Mahatma,	January 2022
Abstract	drought stress in susceptible and	Yogita Deshmukh,	
	tolerant cultivaras of groundnut	Umesh K. Kandoliya,	
		G. V. Marviya,	
		Meera Joshi and	
		Ashish Vala	
	Seroprevalence of PPR Virus in	M. M. Tajpara	International Journal of
	Pre- and Post-Vaccinated Sheep and	J. B. Kathiriya and	Current Microbiology &
	Goats of Saurashtra Region of	H. H. Savsani	Applied Sciences, 11(2): 275-
	Gujarat		283, February 2022
	The Role of Self-Help Groups in	Hetal A. Manvar and	Ayudh International Peer-
	Women Empowerment in Rajkot	Dr. Mita Raviraj	Reviewed Referred Journal,
	District of Gujarat (Research Paper)	Rajpura,	ISSN-2321: 2160, Impact
			factor: 4.7, VoI-4, April 2022
	Impact of training programme on	Manvar H. A,1,	SEEG National Seminar-
	livelihood of rural women of Rajkot	Kathiriya J. B.2,	2022 Souvenir, 24-25 June
	district of Gujarat (Abstract)	Saradva D. A.3 and	2022 JAU, Junagadh (ES-57
		Hirapara D. S.4.	page No 212)
	Adoption level of the dairy farmers	M. M. Tajpara	SEEG National Seminar-
	about recommended improved	B. N. Kalsariya	2022 Souvenir, 24-25 June
	animal husbandry practices	V. P. Dadhania and	2022 JAU, Junagadh (ES-67
		B. B. Kabaria	page No 217)
	Knowledge of dairy farmers	M. M. Tajpara	SEEG National Seminar-
	towards recommended animal	B. N. Kalsariya	2022 Souvenir, 24-25 June
	husbandry practices in Rajkot	B. B. Kabaria and	2022 JAU, Junagadh (ES-68
	district	V. P. Dadhania	page No 218)
	Socio personal characteristics of	M. M. Tajpara	SEEG National Seminar-
	dairy farmers about improved	B. N. Kalsariya	2022 Souvenir, 24-25 June
	animal husbandry practices in	V. P. Dadhania and	2022 JAU, Junagadh (RLD
	Rajkot district	B. B. Kabaria	121 page No 410)
	Application of climate resielient	M. M. Tajpara	SEEG National Seminar-
	technologies in NICRA village of	B. N. Kalsariya	2022 Souvenir, 24-25 June
	Rafala	B. B. Kabaria and	2022 JAU, Junagadh (GI-41
		V.P. Dadhania	page No 482)
	Isolation of PPRV in vero cell line	M.M. Tajpara	The Pharma
	from Saurashtra region of Gujarat	D.R. Patel and	Innovation Journal, 11(12):
T 1 · · ·	M 41 4 6' 41 1	P. M. Makwana	2496-2499, November 2022
Technical	Monthly, quart, Six monthly and	Junagadh Agri.	19
reports	Annual	University	
Others			

C. Details of Social Media Platforms Created / Used

S. No.	Type of social media platform	Title of social media	Number of Followers/ Subscribers
1	YouTube Channel		
2	Facebook page/ Account		
3	Mobile Apps		
4	WhatsApp groups	11	1020
5	Twitter Account	1	10
6	Any other (Pl. Specify)		

D. Success Stories / Case studies, if any (two or three pages write-up on each case with suitable action photographs. The Success Stories / Case Studies need not be restricted to the reporting period).

Name of Farmer:	Babubhai Devabhai Ramani
Village :	Khorana
Taluka :	Rajkot
District :	Rajkot
Mo. No.:	6352115172
Age :	65 Years
Education :	5 th Pass
Land Holding :	14 Acre
Livestock :	Gir Cow-1
Crops Grown :	Cotton, Groundnut, Wheat, Chickpea,

(1) Higher yield of cotton through drip irrigation system

Special Recognition:

Babubhai Devabhai Ramani is a progressive farmer of Khorana village of Rajkot Taluka. He always uses to adopt new technologies to obtain higher production and maximum net return from the farming. He attends the majority of the training as well as other programmes organized at KVK, Targhadia (Rajkot-I) and implements the new technologies in his field. With the technical guidance of KVK, he cultivates the *Bt*. Cotton crop with drip irrigation system since last four years.

Babubhai has adopted drip irrigation system in cotton crop since 2019-20 and cultivates cotton crop with drip irrigation every year. He got cotton yield of 1250 kg/acre, 1325 kg/acre, 1300 kg/acre and 1350 kg/acre during the years of 2019-20, 2020-21, 2021-22 and 2022-23, respectively. He has cultivated the *Bt*. Cotton in 5 acre with drip irrigation system during the year 2022-23 and received total production of 6750 kg from 5 acre land area and earned total Rs. 6,41,250/- with net profit of Rs. 4,96,250/-.

Babubhai says "There is no age for learning, one can learn at any age"

- E. Give details of innovative methodology or innovative technology of Transfer of Technology developed and used during the year
 - Use of cow urine, butter milk, bajra flour, etc. for insect pest and disease management.
 - Use of small or wrinkle seeds of groundnut for sowing purpose.
 - Farmers grow maize as a mixed crop in groundnut and inter crop in cotton is best

Practices for sucking pest management by attracting the natural enemies.

- Cotton Stalk Shredder
- Tractor mounted spryer
- Chaff cutter for minimizing the animal fodder waste
- IPM in cotton-Use of Trap crop, Pheromone trap, etc.
- Minimizing the chemical fertilizer and maximizing organic manure.
- Value addition in different agriculture crops like groundnut, sesame etc.

F. Give details of indigenous technology practiced by the farmers in the KVK operational area which can be considered for technology development (in detail with suitable photographs)

S. No.	Crop /	ITK Practiced	Purpose of ITK
	Enterprise		
1	Groundnut	Farmers maintain a set furrow system and	To get residual effect of
		apply manure and fertilizers every year in	manure and fertilizers in
		the same furrow.	succeeding crop
	Groundnut	Some farmers near the river bed, apply sand	To reduce the water
		in the set furrow for increasing infiltration	Logging condition in the
		rate of the soil	field
	Groundnut	Farmers grow maize as mix crop in	To increase natural enemies
		groundnut	& fodder purpose
2	Kharif crops	Farmer apply lifesaving supplementary	For life saving irrigation to
		irrigation to the crops during moisture stress	minimize the risk of crop
		condition	failure
3	Cotton	Farmers grow maize after 3-4 rows of	To increase the natural
		cotton	enemies and fodder purpose
4	Cotton	After heavy rain, farmer apply irrigation to	To balance the salt
		balance the salt concentration at top of soil	concentration
5	Livestock	Use of salt in cotton seed cake	Increase milk production
	(Cow,	Use of calcium carbonate in water tank	For control of bacterial
	Buffalo)		infection and calcium
			deficiency
		Use of petrol and diesel in wound	For control of maggot
			wound

5. LINKAGES

Name of organization	Nature of linkage
Name of organizationDy. Director of Agriculture.Dy. Director of Agril. Extension (FTC)Dy. Director of HorticultureDy. Director of Social ForestryJilla Udhyong KendraMilk Co-Operative Society (Gopal Dairy)Bank of BarodaNational Bank for Agriculture & Rural DevelopmentNABARD)NHRDFDoordarshan KendraAll India RadioWALMIDistrict Rural Development Agency(DRDA)ATMAGLDCDistrict Watershed Development Agency (DWDA)GGRCReliance foundationGSFCGNFCIFFCCOKRIBHCO	Nature of Inkage Most of the Organizations are members of Scientific Advisory Committee (SAC) of KVK and have linkage with different activities of KVK viz., Training Programme, Khedut Sibir, Farmers Day, Animal treatment Camp, Farmers fair, Film Show, Ex-training meeting and Soil health card etc.

NB The nature of linkage should be indicated in terms of joint diagnostic survey, joint implementation, participation in meeting, contribution received for infrastructural development, conducting training programmes and demonstration or any other

B. List special programmes undertaken by th	e KVK and operational now, which have been	1
financed by State Govt./Other Agencies		

Name of the scheme	Date/ Month of initiation	Funding agency	Amount (Rs.)
Agricultural Technology Information Center (ATIC)	2004	Govt. of Gujarat	16,40,000/-
Cluster Frontline Demonstrations on Rabi Pulses under NFSM	2015-16	ICAR-New Delhi	1,80,000/-
Cluster Frontline Demonstrations on Oilseeds under NMOOP	2015-16	ICAR-New Delhi	2,40,000/-
Attracting and Retaining Youth in Agriculture (ARYA)	2015-16	ICAR-New Delhi	7,46,350/-
Creation of Seed Hubs for Increasing Indigenous Production of Pulses in India	2016-17	ICAR-New Delhi	-
Capacity building of Farmers through training program on profitable diary farm and livestock management Scheme	2021-22	ICAR-New Delhi	1,88,651/-
Out scaling of Natural Farming through KVKs	2022-23	ICAR-New Delhi	2,51,000/-
Kisan Bhagidari Prathmikta Hamari	2022-23	ICAR-New Delhi	60,592/-

C. Details of linkage with ATMA

Is ATMA implemented in your district

Coordination activities between KVK and ATMA

			No. of	No. of	Other
S. No.	Programme	Particulars	programmes attended by KVK staff	programmes Organized by KVK	remarks (if any)
01	Meetings	Staff meeting	2	-	-
02	Research Projects				-
03	Training Programmes	Farmer training	5	1	-
04	Demonstrations	Technology demonstration	2	2	
05	Extension Programmes				
	KisanMela		-	-	-
	Technology Week		1	1	-
	Exposure visit		4	_	_
	Exhibition		-	-	
	Soil health camps		-	-	-
	Animal Health		_	-	-
	Campaigns				
	Others		-	-	-
06	Publications				-
	Video Films				-
	Books				-
	Extension Literature				-
	Pamphlets				-
	Others (Pl. specify)				-
07	Other Activities (Pl.specify)				
	Watershed Approach				-
	Integrated Farm Development				

: Yes

D. Details of linkage with PKVY (Paramparagat Krishi Vikas Yojana)

S. No.	Programme	Nature of linkage	Funds received if any Rs.	Expenditure during the reporting period in Rs.	Remarks
1	FLD on Wheat	-	0	-	-
2	FLD on Chickpea	-	0	-	

E. Details of linkage with NFSM

S. No.	Programme	Nature of linkage	Funds received if any Rs.	Expenditure during the reporting period in Rs.	Remarks
1	Pulses: CFLDs, Training, Agro Advisory and Literature distribute	District Agri. Department , Rajkot	1,80,000/-	75,000/-	-
2	Oilseeds: CFLDs, Training, Agro Advisory and Literature distribute	District Agri. Department, Rajkot	2,40,000/-	1,09,750/-	-

7. Convergence with other agencies and departments: Yes

8. Innovator Farmer's Meet

Sl.No.	Particulars	Details
	Have you conducted Farm Innovators meet in your district?	No
	Brief report in this regard	

9. Farmers Field School (FFS) : Nil

S. No	Thematic area	Title of the FFS	Budget proposed in Rs.	Expenditure	Brief report

10.1. Technical Feedback of the farmers about the technologies demonstrated and assessed:

- 1. Many farmers adopted soybean as a new crop in this area.
- 2. Sowing area of groundnut variety GJG-32 increased.
- 3. Heavy infestation of white grub in groundnut in sporadic area particularly in natural farming system.
- 4. Research needed for control of insect-pests and diseases in organic/ natural farming.
- 5. Low incidence of pink ball worm in cotton crop.
- 6. Lumpy skin disease in cattle.
- 7. Late and poor germination was observed in cumin variety GC-4
- 8. Cumin variety GC-4 is high yielding but gradually loosing wilt resistant character
- 9. Heavy infestation of thrips in crops like garlic, onion, cotton, tomato, brinjal, chilly etc.
- 10. Wilt disease was found in chickpea

10.2. Technical Feedback from the KVK Scientists (Subject wise) to the research institutions/ universities:

- 1. Research needed for control of insect-pests and diseases in organic farming
- 2. Colletotricum fungus (Onion ring disease) in Kharif onion
- 3. Longer inter calving period in buffalo

11. Technology Week celebration during 2022: Yes

Period of observing Technology Week: From to 12th to 17th September 2022 Online / Offline: Offline Total number of farmers visited: 418 Total number of agencies involved: 5 Number of demonstrations visited by the farmers within KVK campus: 7

Other Details

Types of Activities	No. of Activities	Number of Farmers	Related crop/livestock technology
Gosthies	-	-	
Lectures organized	12	418	Agronomy, plant protection, Value addition, Natural resort management, Livestock production and management
Exhibition	1	418	Agri equipment and demo unit
Film show	2	418	Crop and livestock technology

Types of Activities	No. of Activities	Number of Farmers	Related crop/livestock technology
Fair	-	-	-
Farm Visit	6	402	Field and Demo unit visit
Diagnostic Practical's	2	102	Groundnut
Supply of Literature (No.)	-	418	Pamphlet of agriculture and livestock
Supply of Seed (q)	-	-	
Supply of Planting materials(No.)	-	-	
Bio Product supply (Kg)	-	-	
Bio Fertilizers (q)	-	-	
Supply of fingerlings	-	-	
Supply of Livestock specimen (No.)	-	-	
Total number of farmers visited			
the technology week	-	418	

12. Interventions on drought mitigation (if the KVK included in this special programme): - Nil -

13. IMPACT

A. Impact of KVK activities (Not to be restricted for reporting period).

Name of specific technology/skill	No. of	% of	Change in in	Change in income (Rs.)		
transferred	participants	adoption	Before (Rs./Unit)	After (Rs./Unit)		
Improved variety of Cumin (GC-4)	265	85	35000	52000		
Improved variety of Gram (GJG-5)	198	75	32500	43000		
New variety of Groundnut (GJG-32)	355	60	45000	63000		
Wheat variety (GW-496, 366)	210	80	32500	38000		
Use of <i>Trichoderma</i> for the control of stem rot in groundnut	425	75	30200	35000		
Use of mineral mixture in buffalo	235	65	39000	44000		

NB: Should be based on actual study, questionnaire/group discussion etc. with ex-participants.

B. Cases of large-scale adoption

(Please furnish detailed information for each case)

- Adoption of *Trichoderma* for the management of stem rot disease in groundnut.
- Adoption of *Bt*. cotton varieties with INM and IPM concepts.
- Farmers prefer to sow high yielding variety of groundnut i.e. semi spreading variety GG-20 & GJG-22 and bunch variety GJG-32.
- Most of the farmers adopt variety of cumin (GC-4) which is resistant to wilt disease
- Intercropping/mix cropping in groundnut and cotton was adopted for minimize the risk factor in dry land agriculture with preservation of natural enemies.
- Farmers prefer to sow bold seeded variety of chickpea GJG-3
- Farmers are ready to use of rotavator/ cotton shredder/ mobile chopper for increasing the organic matter in soil particularly in *Bt*. Cotton cropping system

C. Details of impact analysis of KVK activities carried out during the reporting period

Month	No. of SMS sent	No. of farmers to which SMS was sent	No. of feedback / query on SMS sent
Jan 2022	2	3000	
Feb 2022	2	3000	
March 2022	2	3000	
April 2022	2	3000	
May 2022	2	3000	
Jun 2022	2	3000	
Jul 2022	2	3000	
Aug 2022	2	3000	
Sept 2022	2	3000	
Oct 2022	2	3000	
Nov. 2022	2	3000	
Dec. 2022	2	3000	

14. Kisan Mobile Advisory Services

			Type of Messages							
Name of KVK	Message Type	Crop	Livestock	Weather	Marketing	Awareness	Other enterprise	Total		
	Text only	5	1	19	-	2	_	27		
	Voice only									
	Voice &									
	Text both									
Rajkot-I	Total									
	Messages									
	Total							-		
	farmers		3000	3000	-	3000	-			
	Benefitted									

15. PERFORMANCE OF INFRASTRUCTURE IN KVK

A. Performance of demonstration units (other than instructional farm)

SI.		Year of	Anoo	Details	etails of production		Amou	nt (Rs.)	Remark
51. No.	Demo Unit	establishment	Area (ha)	Variety	Produce	Qty.	Cost of inputs	Gross income	
1	Vermi composting	2018	0.05	-	-	-	-	-	-
2	Nadep composting	2019	7 x 5 m	-	-	-	-	-	-
3	Crop cafeteria	2012	0.10	Latest vai	riety of dif	ferent	crops		
4	Kitchen garden	2018	0.05	Different	vegetable	crops			
5	Organic farming	2016	1.00	-	-	-	-	-	-
6	Natural farming	2022	1.00	-	-	-	-	-	-

B. Performance of instructional farm (Crops) including seed production

Name	Date of Date of		Area (ha)	छ ्तु Details of product			Amou	Amount (Rs.)	
of the crop	sowing	harvest	A1 (h	Variety	Type of ProduceQty.		Cost of inputs	Gross income	
Pulses:									
Gram	30-10-21	01-03-22	1.00	GG-5	Breeder	2365	-	300000	
Gram	24-11-21	11-03-22	3.00	GG-5	Foundation	5010	-	310000	
Oilseeds:									
Groundnut	05-7-22	19-10-22	1.80	GJG-31	Breeder	1200	-	-	
Groundnut	06-7-22	08-11-22	6.35	GJG-32	Breeder	3150	-	-	
Groundnut	08-7-22	15-11-22	5.65	GJG-32	TF	2400	-	-	

C. Performance of production Units (bio-agents / bio pesticides/ bio fertilizers etc.) : Nil

Sl.	Bio Products	Name of the	Qty	Amount (Rs.)		
No.		Product	(kg/lit)	Cost of inputs	Gross income	Remarks
1	Bio- Fertilizers					
2	Bio-Fungicides					
3	Bio- pesticides					
4	Bio-Agents					

D. Performance of instructional farm (livestock and fisheries production) : Nil

Sl.	Name	Details of production			Amount	Remarks	
No	of the animal / bird / aquatics	Breed	Type of Produce	Qty.	Cost of inputs	Gross income	

E. Details on Rain Water Harvesting Structure and micro-irrigation system

Amount	Expend	Details of		Activities conducted					Area
sanction	iture	infrastructure	No. of	No. of	No. of	Visit by	Visit by	of water	irrigated /
(Rs.)	(Rs.)	created / micro	Training	Demonst	plant	farmers	officials	harvested	utilization
		irrigation	programmes	rations	materials	(No.)	(No.)	in '000	pattern
		system etc.			produced			litres	
-	-	-	2	2	-	102	1	-	4.00

F. Performance of Nutritional Garden at KVK farm

If Nutritional Garden developed at KVK farm/Village Level: Yes

Nutritional Garden developed at KVK farm

Area under nutritional garden (ha)	Component of Nutritional Garden	No. of species / plants in nutritional garden	No. of farmers visited
0.1	Vegetable crops	15	203
	Fruit crops	3	
	Others if any	3	

Nutritional Garden developed at Village Level (Area under nutritional garden)

No. of Villages covered	Component of Nutritional Garden	No. of species / plants in nutritional garden	No. of farmers covered
5	Vegetable crops	15	5
	Fruit crops	5	
	Others if any	_	

16. FINANCIAL PERFORMANCE

Bank account	Name of the bank	Location	Branch code	Account Name	Account Number	MICR Number	IFSC Number
With Host	SBI	Junagadh					
Institute							
With	SBI	Rajkot	463	TRAINING	10353003175	360002002	SBIN0000463
KVK				ORG.KVK.JAU.			
				TARGHADIA			

A. Details of KVK Bank accounts

B. Utilization of KVK funds during the year 2022-23 (Rs. in lakh) (Till Jan., 2023)

S. No.	Particulars	Sanctioned	Released	Expenditure
	ecurring Contingencies			1
1	Pay & Allowances	125.00	92.74	108.63
2	Traveling allowances			
3	Contingencies	14.32	5.82	5.81
A	Stationery, telephone, postage and other expenditure on office running, publication of Newsletter and library maintenance (Purchase of News Paper & Magazines)			
В	POL, repair of vehicles, tractor and Equipments			
С	Meals/refreshment for trainees (ceiling upto Rs.40/day/trainee be maintained)			
D	Training material (posters, charts, demonstration material including chemicals etc. required for conducting the training)			
E	Frontline demonstration except oilseeds and pulses (minimum of 30 demonstration in a year)			
F	On farm testing (on need based, location specific and newly generated information in the major production systems of the area)			
G	Training of extension functionaries			
Н	Maintenance of buildings			
Ι	Establishment of Soil, Plant & Water Testing Laboratory			
J	Library			
	TOTAL (A)	139.32	98.56	114.44
	on-Recurring Contingencies	0.00	0.00	0.00
1	Works			
2	Equipments including SWTL & Furniture			
3	Vehicle (Four wheeler/Two wheeler, please specify)			
4	Library (Purchase of assets like books & journals)			
	TOTAL (B)			
GRA	ND TOTAL (A+B)	139.32	98.56	114.44

C. Status of revolving fund (Rs.) for the four years

Year	Opening balance as on 1 st April	Income during the year	Expenditure during the year	Net balance in hand as on 1 st April of each year
April 2019 to March 2020	26,56,467	19,39,208	19,41,027	26,54,648
April 2020 to March 2021	26,54,648	23,54,367	17,89,147	32,19,868
April 2021 to March, 2022	32,19,868	19,58,910	22,27,738	29,51,040
April 2022 to Dec. 2022	29,51,040	19,45,738	13,11,482	35,85,296

17. Details of HRD activities attended by KVK staff during year

Name of the staff	Designation	Title of the training programme	Institute where attended	Mode (Online/Of fline)	Dates
Dr. G. V. Marviya,	Senior Sci. &	Online Faculty	DEE, JAU,	Online	3-5 Feb.
	Head,	Development	Junagadh		2022
Dr. M. M. Tajpara	Scientist(AH)	Programme for	_		
Dr. J. H.Chaudhary	Scientist	Extension			
	(Agronomy)	Functionaries			
Dr.J.H.Chaudhary	Scientist	Sustainable	Online	Online	01-21
	(Agronomy)	Entrepreneurship in			March,
		Agriculture,			2022
		Horticulture,			
		Fisheries, Animal			
		Husbandry & Allied			
		Sectors for Economic			
		Development of India			
Smt. H. H.	Scientist	"Your discipline, your	DH	Online	20 April
Padsumbiya	(Home	issues in	College		2022
	Science)	contemporary Era"	Rajkot		
Dr. M. M. Tajpara	Scientist	Entry of DFI stories	ICAR-	Offline	23-24 May
	(Animal	into excel	ATARI-		
	Husbandry)		Pune		
Shri D. P.	Scientist	Participatory	EEI, AAU,	Offline	23-28 May
Sanepara	(Agril. Engg.)	Extension	Anand		2022
		Management Skills in			
		Agriculture & Allied			
		Field			
Dr. G. V. Marviya	Senior	XII Biennial National	Dr. Y. S.	Offline	1-2 June
	Scientist and	KVK Conference-	Parmar		2022
	Head	2022	Uni. Of		
			Horti. &		
			Forestry,So		
			lan, Nauni,		
			Homachal		
			paradesh		

Shri D. P. Sanepara Smt. H. H.	Scientist (Agril. Engg. Scientist	Success Story Writing Skills for Print & Electronic Media	DEE, JAU, Junagadh	Offline	8-10 June 2022
Padsumbiya Dr. G. V. Marviya, Dr. M. M. Tajpara Dr. J. H.Chaudhary	(Home Scie.) Senior Sci. & Head, Scientist(AH) Scientist (Agronomy)	Upgradation of HRD skills for extension personnel	DEE, JAU, Junagadh.	Offline	13-15 June 2022
Smt. H. H. Padsumbiya	Scientist (Home Scie.)	"Synergetic Extension Approaches for Livelihood Improvement and Agricultural Development"	JAU, Junagadh	Offline	24-25 June 2022
Dr. M. M. Tajpara	Scientist (Animal Husbandry)	Natural faming workshop	JAU, Junagadh	Offline	30 June 2022
Dr. G. V. Marviya	Senior Scientist and Head	Annual Zonal Workshop on KVKs of ZoneVIII	AAU, Anand	Offline	7-9 July 2022
Dr.J.H.Chaudhary	Scientist (Agronomy)	Natural Farming Orientation cum Training Programme	Kurukshetra Haryana	Offline	08-09 December, 2022